TABLE OF CONTENTS

Standing Operating Procedures/Training Guide Revisions...TOX-REV

Urine Drug Analysis Procedures.................................TOX-SOP- 01

Blood Drug Analysis Procedures.................................TOX-SOP- 02

Poisons...TOX-SOP- 03

Ethanol Quantitation Procedures.................................TOX-SOP- 04

Quality Assurance Guidelines.................................TOX-SOP- 05

Abbreviations and Definitions.................................TOX-SOP- 06

Training Guide..TOX-TG- 01
URINE DRUG ANALYSIS

Purpose

Drugs that impair performance can be detected in blood, urine or other biological specimens. Samples of the biological specimen are screened for the presence of classes of compounds. A sample is extracted and purified for compound confirmation on the gas chromatograph mass spectrometer (GC/MS). Comparison of mass spectral characteristics in conjunction with the chromatographic retention time provides qualitative identification.

Safety

Observe Universal Bloodborne Pathogen Precautions. Personal protective equipment during sample preparation should include: eye protection, lab coat, non-porous gloves (latex, nitrile, neoprene, etc.), surgical masks and a bio-safety hood.

A hepatitis B inoculation is recommended for anyone handling biological fluids.

Use appropriate safety equipment when preparing reagents and handling volatile or caustic chemicals. Refer to MSDS for additional safety information for specific chemicals.

Equipment and Supplies

- Immunoassay test panel
- Toxi-Lab or equivalent supplies and chemicals
- Appropriate Internal Standards
- Urine controls
 - Negative urine controls – commercially prepared
 - Positive urine controls – commercially prepared
- Gas Chromatograph Mass spectrometer (GC/MS)
- Gas Chromatograph – TSD detector
- Vortex
- Centrifuge
- Heat block
- Evaporator
Air displacement pipette and disposable tips
- Disposable pipettes
- Auto sampler vials with micro volume inserts and crimp caps
- Glassware (culture tubes, centrifuge tubes, micro reaction vials, etc.)

Specimens Containing Sufficient Volume (more than 20 mL)

Allow all specimens to equilibrate to room temperature before analysis. Ensure that sufficient sample volume remains to allow for independent analysis.

Screening

- **Immunoassay Screening**

 Perform an immunoassay screen for the presence of cannabinoids, benzodiazepines, and other drugs as needed or provided on the test panel.

 1. If the cannabinoid, cocaine, opiates, or benzodiazepine assay indicates a positive response, follow the specific hydrolysis, extraction, and derivatization procedures for confirmation. Other positive responses are confirmed by regular procedures. If multiple positive responses are indicated (i.e. benzo+cannabinoids), one procedure may be performed if all identified analytes can be confirmed in that procedure.

 2. A negative response indicates additional procedures need not be performed for that analyte or class of analyte.

 3. Negative and positive controls will be run with all batched urine casework specimens.

- **TSD Detector**

 The TSD detector on the Varian 4000 may be utilized as a screening mechanism on urine specimens. Basic urine extraction schemes (liquid/liquid or solid phase extraction) will apply with negative and positive controls run with all specimens analyzed. The use of a suitable standard will be added to all specimens and controls. Refer to Internal Standard Procedure (pg. 18)
Confirmation

- Generalized GC/MS Analysis Procedures

1. Extract the specimen utilizing basic urine extraction schemes (liquid/liquid or solid phase extraction). Liquid/liquid extraction (pg. 12) should utilize the proper extraction tube (Toxi-tube A or equivalent for basic drugs and Toxi-tube B or equivalent for acidic drugs). The use of Solid Phase Extraction (SPE) requires the collection of separate acidic and basic fractions. These fractions will be analyzed independently of one another. Extraction protocol will follow UCT-SPE method outlined on page 13.

2. The use of a suitable standard will be added to all specimens and controls. Refer to Internal Standard Procedure (pg. 18)

3. If confirming volatile compounds (e.g., amphetamines, methamphetamine, pseudoephedrine, etc.) before complete drydown of extraction solvent, add 100µl of 10% HCl/MeOH, or stop short of complete drydown leaving approximately 100-200 µl of solvent.

4. Reconstitute the residue with an appropriate organic solvent and place into a crimped auto sampler vial for GC/MS analysis. Volume reducers may be used as needed.

5. Negative and positive controls will be run with all batched specimens analyzed to include general extraction and special extractions (i.e. benzodiazepines, opiates, benzoylecgonine, etc.)

6. Document on the data entry: method name; description of sample fractions analyzed; analysis procedure; derivatizing reagent used.

Interpretation of Results

- GC Retention Time

1. Retention times from the case specimen must match that of the standard to within ± 0.125 minutes. A list containing retention times is maintained in the laboratory.

2. Retention times are updated as the need arises, i.e. the capillary column is deteriorating or has been shortened or changed. Retention time is determined at the peak maximum height. If the peak width exceeds 0.6 minute, then the sample is diluted and re-analyzed before the retention time may be used.
Mass Spectral Identification

The mass spectrum conditionally identifies the compound.

Specialized GC/MS Analysis Procedures

Benzodiazepine/Opiates Derivatization Procedure

When the benzodiazepine immunoassay indicates positive, sample extraction is needed for confirmation:

1. If needed, adjust the pH of the sample with 0.1 M acetic acid to ensure that it is acidic.
2. Hydrolyze 5 mL urine with β-glucuronidase for 2-3 hours at 55° C.
3. The use of a suitable standard will be added to all specimens and controls. Refer to Internal Standard Procedure (pg. 18).
4. Extract with the appropriate method (Liquid/liquid - Toxi-Tubes or equivalent or Solid Phase Extraction).
5. Evaporate the extract into a micro reaction vial and reconstitute with ethyl acetate and MSTFA.
6. Heat at 60° C for a minimum of ½ hour.
7. Place the sample into a volume reducing vial, crimp, then inject on the GC/MS.
8. Negative and positive controls will be run with all batched specimens analyzed to include general extraction and special extractions (i.e. benzodiazepines, opiates, benzoylecgonine, etc.)

Carboxy THC Derivatization Procedure

When the cannabinoid immunoassay indicates positive, sample extraction is needed for confirmation:

1. Hydrolyze 3-5 mL urine with 200 µL of 10 N NaOH at room temperature for 15 minutes.
2. The use of a suitable standard will be added to all samples and controls. Refer to Internal Standard Procedure (pg. 18).
3. Adjust the pH to ~4-5 using glacial acetic acid.
4. Extract using Toxi-Tube B or equivalent.

5. Evaporate the extract into a micro reaction vial and reconstitute with ethyl acetate and MSTFA.

6. Heat at 60° C for a minimum of ½ hour.

7. Place the sample into a volume reducing vial, crimp, then inject on the GC/MS.

8. Negative and positive controls will be run with all batched specimens analyzed to include general extraction and special extractions (i.e. benzodiazepines, opiates, benzoylecgonine, etc.)

- **Benzoylcegonine Extraction and Derivatization**

When the immunoassay panel screen indicates the presence of benzoylecgonine (cocaine metabolite), sample extraction is needed for confirmation. If the specimen requires benzodiazepine derivatization, benzoylecgonine may be detected through this method; therefore, the more specialized benzoylecgonine method need not be performed.

1. Using a Toxi-tube A or equivalent extraction tube used for liquid/liquid extractions, add approximately 3 mL of urine and methylene chloride to fill to level.

2. The use of a suitable standard will be added to all specimens and controls. Refer to Internal Standard Procedure (pg. 18).

3. Mix by inversion and extract the solvent.

4. Evaporate the extract into a micro reaction vial and reconstitute with ethyl acetate and MSTFA.

5. Heat to 60° C for a minimum of ½ hour.

6. Place the sample into a volume reducing vial, crimp, then inject on the GC/MS.

7. Negative and positive controls will be run with all batched specimens analyzed to include general extraction and special extractions (i.e. benzodiazepines, opiates, benzoylecgonine, etc.)

- **Gamma Hydroxybutyrate (GHB) Screening (by special request only)**

Perform analysis on sexual assault cases requested by the case officer and special cases as requested by DRE officers.

1. Fill Toxi-tube B or equivalent with urine to fill line.
2. Mix by inversion for at least 30 minutes.

3. Evaporate the extract into a micro reaction vial and reconstitute with ethyl acetate and MSTFA.

4. Heat to 60° C for a minimum of 5 minutes.

5. Place the sample into a volume reducing vial, crimp, then inject on the GC/MS.

6. Negative and positive controls will be run with all batched specimens analyzed to include general extraction and special extractions (i.e. benzodiazepines, opiates, benzoylecgonine, etc.)

Interpretation of Results

- **GC Retention Time**
 1. Retention times from the case specimen must match that of the standard to within ± 0.125 minutes. A list containing retention times is maintained in the laboratory.
 2. Retention times are updated as the need arises, i.e. the capillary column is deteriorating or has been shortened or changed. Retention time is determined at the peak maximum height. If the peak width exceeds 0.6 minute, then the sample is diluted and re-analyzed before the retention time may be used.

- **Mass Spectral Identification**
 The mass spectrum conditionally identifies the compound.

Specimens Containing Insufficient Volume (less than 20 ml)

Tests to be performed will change due to conditions and requirements of each case. Ensure that sufficient sample volume remains to allow for independent analysis.

Determine tests to be performed

Review the submission form for possible drug indications. Some tests may be eliminated due to an insufficient volume of sample available. Selection of tests will be dependent on the drugs indicated by the submitting officer.
Screening

- Immunoassay screening

Test for the drugs provided on the immunoassay panel if sufficient sample is available. Negative and positive controls will be run with all batched specimens analyzed. The assay of choice for insufficient volume samples will be the Triage or BioRad Tox/See Immunoassay. It may be necessary to be selective in the choice of the test(s) based on indications from the submission form (or conversation with the officer) and the volume of specimen present.

Confirmation

- Generalized GC/MS Analysis Procedure

If insufficient specimen is available for reanalysis, the analyte(s) cannot be confirmed nor reported.

If sufficient specimen is available (more than 10 mL), extract the specimen using the appropriate extraction technique (liquid/liquid or solid phase) as referenced above. Negative and positive controls will be run with all batched specimens analyzed. The use of a suitable standard will be added to all samples and controls. Refer to Internal Standard Procedure (pg. 18).

1. If confirming for volatile compounds, e.g. amphetamines, methamphetamine, pseudoephedrine, etc., add 100 µL of 10% HCl/MeOH before evaporation, or stop short of complete drydown by leaving 100-200 µL of solvent.

2. Reconstitute the residue with an appropriate organic solvent and place into a crimped auto-sampler vial for GC/MS analysis.

3. Document on the data entry: method name; description of sample fractions analyzed; analysis procedure; and derivatizing reagent used.

Interpretation of Results

- GC Retention Time

1. Retention times from the case specimen must match that of the standard to within ± 0.125 minutes. A list containing retention times is maintained in the laboratory.

2. Retention times are updated as the need arises, i.e. the capillary column is deteriorating or has been shortened or changed. Retention time is determined at the peak maximum height. If the peak width exceeds 0.6 minute, then the sample is diluted and re-analyzed before the retention time may be used.
Mass Spectral Identification

The mass spectrum conditionally identifies the compound.

Specialized GC/MS Analysis Procedures

If insufficient specimen is available for reanalysis, the analyte(s) cannot be confirmed nor reported.

- **Benzodiazepine Derivatization Procedure**

 When the benzodiazepine immunoassay indicates positive, sample extraction is needed for confirmation. Perform extraction only if adequate specimen volume is available. Follow the benzodiazepine derivatization extraction procedure outlined previously. Negative and positive controls will be run with all batched specimens analyzed. The use of a suitable standard will be added to all samples and controls. Refer to Internal Standard Procedure (pg. 18).

- **Carboxy THC Derivatization Procedure**

 When the cannabinoid immunoassay panel indicates positive, sample extraction is needed for confirmation. Perform extraction only if adequate specimen volume is available. Follow the THC derivatization extraction procedure outlined previously. Negative and positive controls will be run with all batched specimens analyzed. The use of a suitable standard will be added to all samples and controls. Refer to Internal Standard Procedure (pg. 18).

- **Toxi-Lab Benzoylecgonine Extraction and Derivatization**

 When the immunoassay panel screen indicates positive cocaine, sample extraction is needed for confirmation. Perform extraction only if adequate specimen volume is available. Negative and positive controls will be run with all batched specimens analyzed. The use of a suitable standard will be added to all samples and controls. Refer to Internal Standard Procedure (pg. 18).

 If the specimen requires benzodiazepine derivatization, benzoylecgonine may be detected through this method; therefore, the more specialized benzoylecgonine method need not be performed.

- **Gamma Hydroxybutyrate (GHB) Screening (by special request only)**

 Perform extraction only if adequate specimen volume is available. Follow the GHB extraction procedure outlined previously. Negative and positive controls will be run
Interpretation of Results

- GC Retention Time

 1. Retention times from the case specimen must match that of the standard to within ± 0.125 minutes. A list containing retention times is maintained in the laboratory.

 2. Retention times are updated as the need arises, i.e. the capillary column is deteriorating or has been shortened or changed. Retention time is determined at the peak maximum height. If the peak width exceeds 0.6 minute, then the sample is diluted and re-analyzed before the retention time may be used.

- Mass Spectral Identification

 The mass spectrum conditionally identifies the compound.

Standards and Controls

Before being placed into service, all urine controls will be verified using established laboratory procedures and expiration dates verified. For MSTFA derivatizing reagent – expiration date will be three years from the date of purchase. For in-house controls – three years from the date of preparation.

Obtain pharmaceutical standards or pure commercially prepared standards for comparison of instrumental spectra or chromatographic characteristics.

Check the blank result analyzed before each case sample on the GC/MS. If a blank contains presence of analytes, the case sample analysis is suspect and must be reanalyzed.

Data Analysis

Qualitative identification of an analyte is based on detection by two dissimilar methods of analysis. Retention times from the case sample must match that of the standard to within ± 0.125 minutes. If the analyte cannot be confirmed by two different methodologies due to a lack of available methods, confirm by GC/MS with extraction of a second sample by the same procedure as used for the screen or use a specific
Pasadena Police Department Regional Crime Laboratory
Standard Operating Procedures
Toxicology

extraction procedure. Confirmation must be performed on a sample aliquot taken from
the specimen that was not used to originally screen for analytes.

The mass spectrum of the analyte must compare to that for the standard obtained
through analysis on laboratory instruments or spectra from literature or reference
material. A spectrum is considered acceptable if all major ions are readily identified
without the presence of any interfering ions from another analyte (i.e. co-elution). If
other interfering ions are present, the analyst must consult with another analyst in the
section to determine if the analyte in question can be reported. This consultation must
be documented on the worksheet. If the spectrum is not acceptable, it will not be used
for confirmation. Place all spectra in the case folder.

The limit of detection for an analyte shall be defined as the concentration of the analyte
required to give a signal equal to the background plus three times the standard
deviation of the background.

If the mass spectrum reveals analytes that were not identified by immunoassay or
toxilab screening, verify that the analyte is not from carryover from another specimen.
Carryover may occur due to the use of automated GC injection systems or due to the
extreme range of drug concentration detected in toxicological specimens. Regardless
of cause, extreme caution is warranted when carryover is detected and requires
sectional notification and review of analytical results. Appropriate action to address
carryover may include reinjection with added solvent blanks between specimens or
reanalysis of some or all specimens. If carryover can be ruled out, focus should be
redirected to the screening mechanisms. If negative and positive controls used in batch
analysis have proven to have acceptable responses, the immunoassay or toxilab cutoff
levels may be higher than the quantity of analyte in the specimen. In this case, use of a
specific extraction procedure on another aliquot of the specimen should be used for
confirmation of the analyte.

Reporting

All printouts, spectra, and reports of analysis must be included in the case folder. A TLC
may be photocopied or the observation will be noted as matching the corresponding
standard. Case identifiers and analyst’s handwritten initials must be present on all
sheets.

If sufficient data supports identification of an analyte, it will be qualitatively listed as
present. Any metabolites detected may be reported as a metabolite of a specific parent
drug (e.g. codeine metabolite), or simply identified by name (e.g. α-hydroxyalprazolam,
norcodeine).
An analyst who is proficient in toxicology will administratively and technically review the case folder. The technical review will be documented in the LIMS.

Securing Evidence

All evidence shall be sealed, dated and initialed prior to being released to the evidence section for filing and storage.

References

- SOFT-AAFS Forensic Toxicology Laboratory Guidelines (available on-line)
- Toxi-Lab Training Manual
- United Chemical Technologies Applications Manual (UCT) (available on-line, on the Toxicology computer, and on disk)
Generalized Liquid/Liquid Extraction Scheme

Add ~ 3 mL of urine to a Toxi-tube or equivalent extraction tube, fill the tube to the 5 mL line with DI water and mix for 1 to 2 minutes.

1. Toxi-tube A or similar extraction tube – All specimens deemed appropriate by the analyst may be subjected to this extraction scheme to isolate basic drugs.

2. Toxi-tube B or similar extraction tube – All specimens deemed appropriate by the analyst may be subjected to this extraction scheme to isolate acidic drugs.

3. If a specialized class of drug is indicated (i.e. benzoylecgonine, cannabinoids, benzodiazepines, GHB, etc.), it may be necessary to perform the specific extraction rather than a general extraction utilizing the appropriate Toxi-tube or equivalent extraction tube. In this case, follow the specialized extraction scheme outlined for that specific drug.

Negative and positive controls will be run with all batched urine casework specimens. The use of a suitable standard will be added to all samples and controls. Refer to Internal Standard Procedure (pg. 18).
Generalized Solid Phase Extraction Scheme

1. PREPARE SAMPLE

 Urine

 To 1 mL of 100mM phosphate buffer (pH=6.0) add internal standards. Add 2 mL of urine.
 Mix/vortex.
 Sample pH should be 6.0 ± 0.5.
 Adjust pH accordingly with 100mM monobasic or dibasic sodium diphosphate.
 Centrifuge as appropriate.

 Blood, Plasma or Serum

 To 1 mL of 100mM phosphate buffer (pH=6.0) add internal standards. Add 1 mL of sample and 4 mL of DI H₂O.
 Mix/vortex and let stand 5 minutes.
 Centrifuge for 10 minutes at 2000 rpm and discard pellet.
 Add 2 mL 100mM phosphate buffer (pH=6.0). Mix/vortex.
 Sample should be 6.0 ± 0.5. Adjust pH accordingly with 100mM monobasic or dibasic sodium phosphate.

2. CONDITION SPE CARTRIDGE

 1 x 3 mL CH₃OH
 1 x 3 mL DI H₂O
 1 x 1 mL 100mM phosphate buffer (pH=6.0)
 Note: Aspirate at < 3 inches Hg to prevent sorbent drying.

3. APPLY SAMPLE

 Load at 1 to 2 mL per minute

4. WASH COLUMN

 1 x 3 mL DI H₂O
 1 x 1 mL 100mM acetic acid
 Dry column (5 minutes at > 10 inches Hg)
 1 x 2 mL Hexane

5. ELUTE ACIDIC AND NEUTRAL DRUGS (FRACTION 1)

 1 x 3 mL hexane/ethyl acetate (50:50);
 Collect elute at < 2 mL/minute

6. DRY ELUTE

 Evaporate to dryness at < 40°C.
Reconstitute with 50 μL ethyl acetate.
Place into vial insert and prepare for GC/MS analysis.

7. WASH COLUMN
 1 X 3 mL CH₃OH; Aspirate
 Dry column (5 minutes at >10 inches Hg)

8. ELUTE BASIC DRUGS (FRACTION 2)
 1 X 3 mL CH₂Cl₂/IPA/NH₄OH (78/20/2)
 Collect elute at 1 to 2 mL/minute
 Note: Prepare elution solvent fresh daily.
 Add IPA/NH₄OH, mix, then add CH₂Cl₂ (pH 11-12)

9. DRY ELUATE
 Evaporate to dryness at < 40°C
 Reconstitute with 50 – 100 μL ethyl acetate.
 Place into vial insert and prepare for GC/MS analysis
 Note: Certain compounds are heat libile, such as amphetamines and PCP. A 1% HCl in CH₃OH solution has been used to prevent volatization by formation of the hydrochloric salt of the drugs. Evaporate fraction 2 to approximately 100 μL, then add 1 drop of the solution. Continue to evaporate to dryness.

Negative and positive controls will be run with all batched urine casework specimens. The use of a suitable standard will be added to all samples and controls. Refer to Internal Standard Procedure (pg. 18).

For more specialized extraction schemes, consult the UCT manual.
Trimethysilyl Derivatization Procedure

Certain drugs are not readily analyzed by GC/MS. They may be too polar, thereby giving broad, ill-defined peaks. Most of these drugs may be made more stable or less polar by derivatization. The drugs that readily derivatize with silation reagent will have an acid, alcohol, or secondary amine functional group.

Sample Hydrolysis and Extraction:

- Extract from matrix by the approved method for the specific drug. See specific extraction method for the drug of interest.
- Place extract into a micro reaction vial.
- Evaporate organic solvent to dryness. Do not use any type of aqueous extract, since water reacts readily with the derivatizing reagent.

Derivatization:

- Reconstitute the extract in ethyl acetate (~50 µL for urine; 50 µL for blood)
- Add derivatizing reagent (~50-150 µL for urine; ~50 µL for blood) to the residue. Either MSTFA or BSTFA may be used.
- Place the micro reaction vial in an oven or dry block heater at 60 °C for 15 minutes. If clonazepam is suspected, heat for one hour.

Analysis:

Inject 1 µL of the reaction mixture into the GC/MS using the appropriate method.
Reagents used Toxicology SPE Methods and Blood Alcohol Analysis

Acetic Acid, 1.0 M:

To 200 ml DI H2O add 14.3mL glacial acetic acid. Dilute to 250 mL with DI H2O. Mix

Acetic Acid, 100mM:

Dilute 25 mL 1.0M acetic acid to 250 mL with DI H2O. Mix.

Acetate Buffer, 1.0M (pH 5.0):

Dissolve 21.45g sodium acetate trihydrate in 200 mL DI H2O; add 5.2 ml glacial acetic acid. Dilute to 250 mL with DI H2O. Mix. Adjust pH to 5.0 ± 0.1 with 1.0M sodium acetate or 1.0M acetic acid.

Acetate Buffer, 100mM (pH 5.0):

Dilute 25 mL 1.0M acetate buffer to 250 mL with DI H2O. Mix.

Acetate Buffer, 100 mM (ph 4.5):

Dissolve 1.45 g sodium acetate trihydrate in 200 mL DI H2O; add 0.8 mL glacial acetic acid. Dilute to 250 mL with DI H2O. Mix. Adjust pH to 4.5 ± 0.1 with 100 mM sodium acetate or 100 mM acetic acid.

Sodium Acetate, 1 M:

Dissolve 13.6 g sodium acetate in 90 mL DI H2O. Dilute to 100 mL with DI H2O. Mix

Sodium Acetate, 100mM:

Dilute 10 mL 1.0M sodium acetate to 100 mL with DI H2O. Mix.

Hydrochloric Acid, 100mM:

To 100 mL DI H2O add 1.05 ml concentrated HCl. Dilute to 125 mL with DI H2O. Mix.
Phosphate Buffer, 100mM, pH 6.0:
Dissolve 340 mg Na2HPO4 and 2.42 g NaH2PO4·H2O in 160 mL DI H2O. Dilute to 200 mL using DI H2O. Mix. Adjust pH to 6.0 ± 0.1 with 100 mM monobasic sodium phosphate (lowers pH) or 100mM dibasic sodium phosphate (raises pH).

Sodium Phosphate Dibasic, 100mM:
Dissolve 1.42 g Na2HPO4 in 80 mL DI H2O. Dilute to 100 mL using DI H2O. Mix.

Sodium Phosphate Monobasic, 100mM:
Dissolve 1.38 g NaH2PO4·H2O in 80 mL DI H2O. Dilute to 200 mL with DI H2O. Mix.

Acetate buffer, 100mM, pH 3.0:
Dissolve 23.7 mg sodium acetate trihydrate in 50 mL DI H2O; add 590 uL glacial acetic acid. Dilute to 100 mL with DI H2O. Mix. Adjust pH to 3.0 ± 0.1 with 100 mM sodium acetate or 100 mM acetic acid.

Hydrochloric Acid, 0.1N:
To 60 mL DI H2O add 365 mg (307uL) concentrated HCl. Dilute to 100 mL with DI H2O.

Sodium Hydroxide, 10N:
Dissolve 10.0 grams of NaOH in 25 mL DI H2O.

Ammonium Sulfate, 1M:
Dissolve 33.0 grams of (NH4)2SO4 in 250 mL DI H2O.

Additional solutions and buffers are listed in the applications manual and may be referenced as required.
Internal Standard Procedure

Appropriate Internal Standards should be added to toxicology samples to verify completeness and precision of the various extraction methods utilized in the section. The two main extraction techniques utilized are solid phase and liquid/liquid. An aliquot of prepared ISTD should be added to all controls and case samples to verify extraction completeness. Additionally, as other components are incorporated into sample extraction, such as quantitation procedures, the ISTD method may be useful in helping verify extraction proficiency and instrumental quantitative precision.

All internal standards utilized should be verified by existing QA/QC measures before being placed into service. If 1 mg/mL commercially prepared stock solutions are not available, prepare 1 mg/mL solutions from powders. Weigh 10 mg of the free drug, transfer to a 10 mL volumetric flask and add quantity sufficient to bring up to volume with methanol, acetonitrile, or appropriate solvent (qs). Note: If using the salt form, determine the amount of the salt needed to equal 10 mg of the free drug, and weigh this amount. Stock solutions are stored capped in a refrigerator and are stable for three (3) years.

From the stock solutions, various working solutions may be made:

<table>
<thead>
<tr>
<th>Working solution concentration</th>
<th>amt stock used</th>
<th>volumetric flask dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>100μg/mL</td>
<td>1mL</td>
<td>10mL qs w/ MeOH</td>
</tr>
<tr>
<td>50μg/mL</td>
<td>500μL</td>
<td>10mL qs w/ MeOH</td>
</tr>
<tr>
<td>20μg/mL</td>
<td>200μL</td>
<td>10mL qs w/ MeOH</td>
</tr>
<tr>
<td>10μg/mL</td>
<td>100μL</td>
<td>10mL qs w/ MeOH</td>
</tr>
<tr>
<td>5μg/mL</td>
<td>50μL</td>
<td>10mL qs w/ MeOH</td>
</tr>
<tr>
<td>2μg/mL</td>
<td>20μL</td>
<td>10mL qs w/ MeOH</td>
</tr>
</tbody>
</table>

The equation to figure working solution concentration when starting with a stock solution of 1mg/mL is as follows: (amount of stock solution used in mL) / (final volume in mL) * 1000. Therefore, if 250μL of stock solution is added to 10mL volumetric flask (qs) – the resulting concentration of the solution is 0.250/10*1000 = 25μg/mL.

If different stock concentrations other than 1mg/mL are used, adjust the amount of stock used accordingly. For instance, if a concentration of stock is purchased at a level of 100μg/mL – the resulting measures take effect.
Internal standard concentrations for casework samples is therefore dependent on which working solutions the analyst will be using and the amount of specimen used from the casework sample. In other words, the amount of internal standard depends on the amount of ISTD added in μL and the concentration of the ISTD added (usually μg/mL). For instance, if 30μL of a 20μg/mL ISTD solution added to 1mL sample of a negative blood control, then a total of 0.6μg of ISTD is in the negative control (0.03 * 20 = 0.6). Since the final volume is theoretically 1mL, then this control has an ISTD concentration of 0.6μg/mL. Another example would be if 100μL of a 20μg/mL ISTD solution is added to 1mL of a negative blood control, then the total ISTD present in the sample is 2μg (0.1 * 20 = 2μg). Since the final volume 1mL, then this control has an ISTD concentration of 2μg/mL.

Therefore, starting with ISTD working solution of 5μg/mL or 10μg/mL, the following concentration levels may be attained. All of the following solutions will be in 1mL negative blood control. Remember these will be theoretical calculations only. The amount of ISTD solution should be added to an amber screw top vial and evaporated under nitrogen before the control blood is added.

<table>
<thead>
<tr>
<th>Concentration of ISTD in sample</th>
<th>mL of ISTD control to be used (5μg/mL)</th>
<th>mL of ISTD control to be used (10μg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0μg/mL also 1000ng/mL</td>
<td>200μL</td>
<td>100μL</td>
</tr>
<tr>
<td>0.5μg/mL also 500ng/mL</td>
<td>100μL</td>
<td>50μL</td>
</tr>
<tr>
<td>0.25μg/mL also 250ng/mL</td>
<td>50μL</td>
<td>25μL</td>
</tr>
<tr>
<td>0.10μg/mL also 100ng/mL</td>
<td>20μL</td>
<td>10μL</td>
</tr>
<tr>
<td>0.05μg/mL also 50ng/mL</td>
<td>10μL</td>
<td>5μL</td>
</tr>
<tr>
<td>0.025μg/mL also 25ng/mL</td>
<td>5μL</td>
<td>2.5μL</td>
</tr>
<tr>
<td>0.01μg/mL also 10ng/mL</td>
<td>2μL</td>
<td>1μL</td>
</tr>
<tr>
<td>0.005μg/mL also 5ng/mL</td>
<td>1μL</td>
<td>0.5μL</td>
</tr>
</tbody>
</table>

PPDLAB Toxicology Casework Samples:

Present volumes of samples used for toxicology exam include using 2mL of urine or 1 to 1.5mL of blood. Therefore, 40μL of a 5μg/mL ISTD solution added to 2.0mL of urine would yield a concentration of 0.10μg/mL or 100ng/mL and 30μL of a 5μg/mL ISTD solution added to 1.5mL of blood would yield a concentration of 0.10μg/mL or
100ng/mL. If more specialized extraction techniques are utilized such as urine cannabinoids or benzodiazepines, the following additions should be added: For urine cannabinoids using 5mL of urine, use 100μL of a 5μg/mL ISTD solution. For urine benzodiazepines using 5mL of urine, use 100μL of a 5μg/mL ISTD solution.

INTERNAL STANDARDS CHART TO PREPARE A WORKING CONCENTRATION OF 5μg/mL

<table>
<thead>
<tr>
<th>Extraction - SPE or liq/liq</th>
<th>ISTD used (powder/base/conc)</th>
<th>Amount stock used for 5μg/mL working</th>
<th>Volume</th>
<th>Manufacturer</th>
<th>Product #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acidic</td>
<td>Thiopental - 1mg/mL</td>
<td>50μL</td>
<td>10mL</td>
<td>Sigma</td>
<td>T1019-10MG</td>
</tr>
<tr>
<td>Basic</td>
<td>Mepivacaine HCl - 1mg/mL</td>
<td>50μL</td>
<td>10mL</td>
<td>Sigma</td>
<td>M3189-1G</td>
</tr>
<tr>
<td></td>
<td>SKF-38393 HCl - 1mg/mL</td>
<td>50μL</td>
<td>10mL</td>
<td>Sigma</td>
<td>D047-500MG</td>
</tr>
<tr>
<td>Benzodiazepines</td>
<td>Prazepam - 1mg/mL</td>
<td>50μL</td>
<td>10mL</td>
<td>Sigma</td>
<td>P3654-25MG</td>
</tr>
<tr>
<td>Cannabinoids</td>
<td>11-OH Δ9-THC D3 - 100μg/mL</td>
<td>500μL</td>
<td>10mL</td>
<td>Cerilliant</td>
<td>H041</td>
</tr>
</tbody>
</table>
BIOLOGICAL EVIDENCE COLLECTION
PRESERVATION, STORAGE AND DISPOSAL

1. Blood Sample Collection, Preservation and Storage

Collection
Samples will be collected pursuant to Texas Transportation Code, §724.011 or Texas Penal Code, §22.011 or 22.021.

Preservation and Storage
- Blood samples submitted to the laboratory for blood alcohol/drug analysis will be in a suitable container. Preference is given to grey top vacutainer tubes but other tubes, such as red or lavender top vacutainer tubes, may be used.
- All blood samples received will be documented with unique identifiers (laboratory number and analyst initials). The evidence will be secured and refrigerated until analysis is complete.

2. Securing Evidence
All evidence shall be sealed with the analyst’s initials and date placed on the seal. The evidence will be transferred to Centralized Evidence Receiving to be filed after completion of analysis.

3. Specimens other than Blood
All other specimens and samples will be obtained and secured in clean vials or containers, free from alcohol or drug contamination. Preservation with an antibacterial agent is not necessary. Due to the acidic pH of urine and the high alcohol concentration of some beverages (concentrations greater than about 20% v/v), bacteria will not survive. Mold, however, will grow in beer samples. It is recommended that all alcohol analysis of beverage samples be performed within 24 hours of receipt to insure that alcohol neoformation by bacteria is not a factor.

4. Final disposition after analysis
When the biological evidence is no longer required for criminal prosecution, it should be destroyed following Universal Bloodborne Pathogen Precautions.
QUALITY ASSURANCE OF EQUIPMENT

1. Purpose
To establish quality assurance guidelines for the maintenance, calibration, and repair of analytical instrumentation, balances, and pipettes.

2. Maintenance and Calibration of Laboratory Instrumentation

General Requirements for Analytical Instrumentation
All instruments will be periodically maintained and properly calibrated in accordance with the manufacturer’s recommendations and specifications and/or laboratory policy. All instruments will be checked after being moved or if a major repair is performed.

Gas Chromatography

- Calibration
Gas Chromatographs must be calibrated during each analysis session with the exception that if the instrument is shut down between sampling batches, when reanalysis of a previously tested specimen is required, or a priority sample is submitted and the same analyst will perform the analysis, recalibration is not necessary if controls analyzed prior to sample analysis demonstrate linearity of the method and initial calibration was performed no more than a week prior. The use of additional control standards and/or frequency of recalibration may be determined by the laboratory.

The calibration and control standard charts or results will be maintained in a logbook, file, or electronically retrievable form. Calibration criteria specific to the instrument and calibration technique shall be established.

- Linearity Plots for Detectors
The linearity of each detector used must be proven across a wide range of ethanol concentrations. Standards for linearity confirmation must include the following four ethanol standards: 0.05, 0.10, 0.20, and 0.40.

The results of the linearity confirmation will be graphed as alcohol concentration versus detector response or area response ratio. The resulting graph should indicate a linear response across the range of standards tested. If the correlation coefficient (R) is less than 0.995, the issue should be investigated.

- Gas Chromatograph Maintenance
Perform regular and preventative maintenance according to the manufacturer's recommendations or as necessary. A logbook of all maintenance will be kept with the instrument.

Gas Chromatography/Mass Spectrometry (GC/MS)

Performance Verification Check

- The Mass Selective Detector (MSD) should be tuned monthly before use or more often as needed (such as when carrier gas is changed or mass assignment fails a quality check).

- The instrument should be tuned according to the manufacturer's instructions and must meet the manufacturer's specification. If the manufacturer's specifications are not met, the instrument will be removed from service until it is repaired.

- A cocaine standard should be run monthly and the scan results entered in the logbook and maintained with the tune report for that month. If the m/z ratios of 303, 182, and 82 vary by one or more, the instrument will be re-tuned and the standard re-run. If the re-tuning does not correct the discrepancy, the instrument will be removed from service until it is repaired.

- Maintain a logbook with the results.

Other GC/MS Maintenance

- Run a solvent blank before each sample run. A copy of the blank run should be maintained with the case file.

- Perform regular and preventive maintenance according to the manufacturer's recommendations. A logbook documenting all non-routine maintenance (e.g. column replacement, filament replacement, seal replacement, vacuum oil changes, source cleaning, and major repairs) will be kept with the instrument.

Mechanical Pipette Performance Verification Check

Pipettes must be tested for accuracy and precision once a year. Calibration may be performed by an approved outside source or may be accomplished by personnel within the laboratory according to the laboratory's specification.

A record of the performance verification check, calibration, and any adjustment(s) will be maintained.
BLOOD DRUG ANALYSIS PROCEDURE

Purpose

Drugs that impair performance can be detected by analyzing blood, urine or other biological specimens. A blood sample is extracted and purified for analyte confirmation on the gas chromatograph mass spectrometer (GC/MS). Comparison of mass spectral characteristics of the sample to a standard provides qualitative identification, in conjunction with the chromatographic retention time.

Safety

Observe Universal Bloodborne Pathogen Precautions. Personal protective equipment during sample preparation should include: eye protection, lab coat, non-porous gloves (latex, nitrile, neoprene, etc.), surgical masks, and a bio-safety laminar flow hood.

A hepatitis B inoculation is recommended for anyone handling biological fluids.

Use appropriate safety equipment when preparing reagents and handling volatile or caustic chemicals. Refer to MSDS for additional safety information for specific chemicals.

Equipment and Supplies

- Solid Phase Extraction Columns
- Gas Chromatograph/Mass Spectrometer (GC/MS)
- Vortex
- Centrifuge
- Evaporator
- Air displacement pipette and disposable tips
- Disposable pipettes and beakers
- Auto sampler vials with micro volume inserts and crimp caps
- Glassware (culture tubes, centrifuge tubes, micro reaction vials, etc.)

Blood drug controls

- Negative blood drug control – commercially prepared such as ethanol
 whole blood control or volatile whole blood control or other available
 whole blood control
- Positive blood drug control – commercially prepared such as ethanol
 whole blood control spiked with an in-house prepared drug mix
 documented with appropriate paperwork.
The use of a suitable standard will be added to all samples and controls. Refer to Internal Standard Procedure (pg. 20).

Samples Containing Sufficient Volume: > 3 mL available

Allow all samples to equilibrate to room temperature before analysis. Ensure that sufficient sample volume remains to allow for independent analysis.

Blood alcohol concentration

If the blood alcohol concentration is > 0.08 grams/100 mL of blood, no further analysis is necessary. However, a drug screen may be performed if requested by the submitting or prosecutorial agency in certain instances, i.e. sexual assaults, vice, burglary & theft, DWI manslaughter, etc. If the blood alcohol concentration is < 0.08 grams/100 mL of blood, analyze for the possible presence of drugs.

See Ethanol Quantitation Procedure.

General Drug Extraction – Preliminary Identification by Mass Spectral Analysis

Solid Phase Extraction of Blood Sample

Solid phase extraction of blood samples is the preferred method for analyte extraction. Perform analysis using the United Chemical Technologies procedure for "Forensic Sample Drug Analysis for GC or GC/MS using: Xtract® column XRDAH206 (large particle size and high porosity frit) or XRDAH 505." The extraction scheme follows on page 12. Follow sample preparations for whole blood. **Allow gravity or positive pressure to force the sample and reagents to flow through the SPE tube.**

- Place the reconstituted residue into a crimped auto sampler vial for GC/MS analysis and analyze on appropriate method.

- Document on the data entry: method name, description of sample fractions analyzed, analysis procedure and other pertinent information.

- When the GC/MS analysis is complete for Fractions A and B, **combine both acid/neutral and basic fractions to derivatize with MSTFA.** See the Trimethyl Silyl Derivatization Procedure. Inject the derivatized sample into the GC/MS, using the appropriate method. Derivatizing the fractions will enable
Liquid/liquid Extraction

- Alternatively, a liquid/liquid extraction scheme may be utilized if solid phase extraction is deemed unacceptable. Use Toxi-tube A/B or equivalent. The extraction procedures will follow the liquid/liquid extraction protocol outlined on page 14. Negative and positive controls will be run with all batched blood samples analyzed. The use of a suitable standard will be added to all samples and controls. Refer to Internal Standard Addition Procedure (pg. 20).

Interpretation of results:

Screening – GC retention time
Retention times from the case sample must match that of the standard to within ± 0.125 minutes. A list containing retention times is maintained in the laboratory. Retention times are updated as the need arises, i.e. the capillary column is deteriorating or has been shortened or changed.

Preliminary Identification – Mass Spectrum
The mass spectrum conditionally identifies the compound.

General Drug Extraction – Confirmation by Mass Spectral Analysis

Once conditional identification has been established, a second extraction from the sample exhibit shall be performed. This extraction should confirm the results from the conditional extraction and allow the reporting of the analyte. Ideally, the second sample should be from a different sample exhibit than the first sample; however, if this is not possible, a different aliquot from the initial sample may be used. The extraction procedure may be the same as initially used (general drug extraction) or a more specialized version (e.g. opiate, benzodiazepines, etc.) as highlighted in the United Chemical Technology Manual. This extraction should also encompass the use of positive and negative controls. The use of a suitable standard will be added to all samples and controls. Refer to Internal Standard Procedure (pg. 20).
Interpretation of results:

GC retention time
Retention times from the case sample must match that of the standard to within ± 0.125 minutes. A list containing retention times is maintained in the laboratory. Retention times are updated as the need arises, i.e. the capillary column is deteriorating or has been shortened or changed.

Identification – Mass Spectrum
The mass spectrum identifies the compound and allows for reporting of that compound in conjunction with the preliminary analysis.

Specialized Extraction Schemes – Preliminary Identification by Mass Spectral Analysis

THC and Carboxy THC in Whole Blood for GC/MS Identification [to be performed on all samples with sufficient volume]

Solid phase extraction of blood samples is the preferred method for cannabinoid extraction. Perform analysis using the United Chemical Technologies procedure for "delta-9-THC (parent), delta-9-hydroxy THC, THC acid in whole blood for GC/MS Confirmation" The extraction scheme follows on page 15.

Liquid/liquid Extraction
Alternatively, a liquid/liquid extraction scheme may be utilized if solid phase extraction is deemed unacceptable. The extraction procedure will follow the liquid/liquid extraction protocol outlined on page 17.

Negative and positive controls will be run with all batched blood samples analyzed. The use of a suitable standard will be added to all samples and controls. Refer to Internal Standard Addition Procedure (pg. 20).
GHB in Whole Blood for GC/MS Identification

Perform analysis by special request only. Extract ~ 0.5 mL of blood, using either method as described for GHB analysis (page 18). Positive and negative controls will be utilized with all GHB batch sample runs. Negative control will be commercially prepared while the positive control will be a commercially prepared whole blood base spiked with an in-house standard of GHB. The use of a suitable standard will be added to all samples and controls. Refer to Internal Standard Procedure (pg. 20).

Interpretation of results:

Screening – GC retention time
Retention times from the case sample must match that of the standard to within ± 0.125 minutes. A list containing retention times is maintained in the laboratory. Retention times are updated as the need arises, i.e. the capillary column is deteriorating or has been shortened or changed.

Preliminary Identification – Mass Spectrum
The mass spectrum conditionally identifies the compound.

Specialized Drug Extraction – Confirmation by Mass Spectral Analysis

Once conditional identification has been established, a second extraction from the sample exhibit shall be performed. This extraction should confirm the results from the conditional extraction and allow the reporting of the analyte. Ideally, the second sample should be from a different sample exhibit than the first sample; however, if this is not possible, a different aliquot from the initial sample may be used. The extraction procedure will be the same procedure used in the preliminary extraction. This extraction should also encompass the use of positive and negative controls. The use of a suitable standard will be added to all samples and controls. Refer to Internal Standard Procedure (pg. 20).

Interpretation of results:

GC retention time
Retention times from the case sample must match that of the standard to within ± 0.125 minutes. A list containing retention times is maintained in the laboratory.
Retention times are updated as the need arises, i.e. the capillary column is deteriorating or has been shortened or changed.

Identification – Mass Spectrum

The mass spectrum identifies the compound and allows for reporting of that compound in conjunction with the preliminary analysis.

If Protein Bound Drug is Suspected [by special request only or analyst discretion]

The following methods may be employed with whole blood, plasma or serum samples to disrupt protein binding to drug materials.

- **pH modification:**
 1. pH adjustment – extreme pH values (i.e. greater than 9 or less than 3). In these cases, buffer strengths greater than or equal to 0.1M should be used.
 2. pH adjustments in stages (i.e. buffering first to 5 then to 3)

- **Precipitation:**
 1. Employing a polar solvent (e.g. acetonitrile, acetone, or methanol). In general, two parts organic solvent to one part biological sample. Mix/vortex then centrifuge down the sample leaving the precipitate at the base of the sample vessel.
 2. Inorganic salts such as ammonium sulfate or zinc sulfate may also be employed to disrupt protein binding.

- **Acid Treatment:**
 In this process, biological samples may be treated w/ formic, perchloric, or trichloroacetic acids (e.g. 50μL of 1.0M perchloric acid per 500μL of plasma or 1:1 dilution of the sample with 10% trichloroacetic acid)

- **Sonication:**
 The addition of an appropriate buffer (e.g. phosphate or acetate) may be followed by sonication of the sample for a period of approximately 15 minutes. The sample is then vortex mixed and centrifuged. The supernatant may be decanted off and pellet discarded.

- **Enzymatic Hydrolysis:**
 In this procedure, a proteolytic enzyme such as B-glucuronidase is used to disrupt the protein binding and cleave the drug. To the sample is added 1ml of an appropriate buffer for the enzyme (e.g. 1ml of a 1M acetate buffer (pH 5) with 100μL of B-glucuronidase. The sample is
then heated 60°C for 1 hour. The sample is cooled, vortex mixed and centrifuged.

After employing one of the preceding methods, an appropriate extraction protocol may be used – such as SPE extraction (benzodiazepine or opiate), liquid/liquid extraction, etc. followed by derivatization with mstfa. Analyze on GC/MS using an appropriate method. Appropriate positive and negative controls should be used. The use of a suitable standard will be added to all samples and controls. Refer to Internal Standard Procedure (pg. 20).

Interpretation of results:

Screening – GC retention time
Retention times from the case sample must match that of the standard to within ± 0.125 minutes. A list containing retention times is maintained in the laboratory. Retention times are updated as the need arises, i.e. the capillary column is deteriorating or has been shortened or changed.

Preliminary Identification – Mass Spectrum
The mass spectrum conditionally identifies the compound.

Confirmation Extraction by Mass Spectral Analysis
Once conditional identification has been established, a second extraction from the sample exhibit shall be performed. This extraction should confirm the results from the conditional extraction and allow the reporting of the analyte. Ideally, the second sample should be from a different sample exhibit than the first sample; however, if this is not possible, a different aliquot from the initial sample may be used. The extraction procedure will be the same procedure used in the preliminary extraction. This extraction should also encompass the use of positive and negative controls. The use of a suitable standard will be added to all samples and controls. Refer to Internal Standard Procedure (pg. 20).

Interpretation of results:

GC retention time
Retention times from the case sample must match that of the standard to within ± 0.125 minutes. A list containing retention times is maintained in the laboratory. Retention times are updated as the need arises, i.e. the capillary column is deteriorating or has been shortened or changed.
Identification – Mass Spectrum
The mass spectrum identifies the compound and allows for reporting of that compound in conjunction with the preliminary analysis.

Insufficient Volume: ~ 3.0 ml or less available

Tests to be performed will change due to conditions and requirements of each case. Ensure that sufficient sample volume remains to allow for independent analysis.

Determine tests to be performed. Review the submission form for possible drug indications and tailor extraction scheme for that particular analyte (generalized or specialized extractions).

Blood alcohol concentration

If the blood alcohol concentration is > 0.08 grams/100 mL of blood, no further analysis is necessary. However, a drug screen may be performed if requested by the submitting agency or prosecutorial body in certain instances, i.e. sexual assaults, vice, burglary & theft, intoxication manslaughter, etc. If the blood alcohol concentration is < 0.08 grams/100 mL of blood, analyze for the possible presence of drugs.

Reduced Volume Generalized or Specialized Drug Extraction – Preliminary Identification by Mass Spectral Analysis

Solid phase extraction of blood samples is the preferred method for analyte extraction. Perform analysis using the generalized drug extraction procedure previously mentioned or the specialized drug extraction procedures previously mentioned. The submission information may help determine which extraction scheme is followed. Negative and positive controls will be run with all batched blood samples analyzed. The use of a suitable standard will be added to all samples and controls. Refer to Internal Standard Addition Procedure (pg. 20).
Interpretation of results:

Screening – GC retention time
Retention times from the case sample must match that of the standard to within ± 0.125 minutes. A list containing retention times is maintained in the laboratory. Retention times are updated as the need arises, i.e. the capillary column is deteriorating or has been shortened or changed.

Preliminary Identification – Mass Spectrum
The mass spectrum conditionally identifies the compound.

Confirmation Extraction by Mass Spectral Analysis
Once conditional identification has been established, a second extraction from the sample exhibit shall be performed. This extraction should confirm the results from the conditional extraction and allow the reporting of the analyte. Ideally, the second sample should be from a different sample exhibit than the first sample; however, if this is not possible, a different aliquot from the initial sample may be used. The extraction procedure may be the same as initially used (general drug extraction) or a more specialized version (e.g. cannabinoids, GHB) as highlighted previously. This extraction should also encompass the use of positive and negative controls. The use of a suitable standard will be added to all samples and controls. Refer to Internal Standard Procedure (pg. 20).

Interpretation of results:

GC retention time
Retention times from the case sample must match that of the standard to within ± 0.125 minutes. A list containing retention times is maintained in the laboratory. Retention times are updated as the need arises, i.e. the capillary column is deteriorating or has been shortened or changed.

Identification – Mass Spectrum
The mass spectrum identifies the compound and allows for reporting of that compound in conjunction with the preliminary analysis.

If sufficient sample is unavailable for a confirmation extraction and the preliminary ID is from Mass Spectra analysis, the analyte may be reported as a preliminary result. The reporting of the analyte in a preliminary fashion allows the Laboratory’s customers’ to ascertain vital information that may lead to developing additional analysis requests on submitted samples that are not
analyzed (i.e. exhibits held for independent analyses). The wording on the report should be as follows:

- Preliminary Mass Spectra analysis of the submitted sample did indicate the presence of drug A; however, due to insufficient sample volume the confirmation of drug could not be reported.

Standards and Controls

Obtain pharmaceutical standards or pure commercially prepared standards for comparison of instrumental spectra or chromatographic.

Before being placed into service, all blood controls will be verified using established lab procedures and expiration dates verified. For MSTFA derivatizing reagent – expiration date will be three years from the date of purchase. For in-house controls – three years from the date of preparation.

Data Analysis

Qualitative identification of an analyte is based on detection by two dissimilar methods of analysis. Gas Chromatographic retention times from the case sample must match that of the standard to within ± 0.125 minutes.

The mass spectrum of the analyte must compare to that for the standard obtained through analysis on laboratory instruments or spectra from literature or reference material. A spectrum is considered acceptable if all major ions are readily identified without the presence of any interfering ions from another analyte (i.e. co-elution). If other interfering ions are present, the analyst must consult with another section analyst to determine if analyte in question can be reported. This consultation must be documented on the worksheet. If the spectrum is not acceptable, it will not be used for confirmation. Place all spectra in the case folder.

Additionally, carryover must be addressed in sample analysis. Carryover may occur due to the use of automated GC injection systems or due to the extreme range of drug concentrations detected in toxicological samples. Regardless of cause, extreme caution is warranted when carryover is detected and requires sectional notification and review of analytical results. Appropriate action to address carryover may include reinjection with added solvent blanks between samples or reanalysis of some or all samples.
Check the blank result analyzed before each case sample on the GC/MS. If a blank contains presence of analytes (carryover), the case sample analysis is suspect and may require reanalysis. Blank analyses must be obtained with the same GC method as the unknown.

The limit of detection for an analyte shall be defined as the concentration of the analyte required to give a signal equal to the background plus three times the standard deviation of the background.

Reporting

All printouts, spectra, and reports of analysis must be included in the case folder. Case identifiers (lab number) and analyst’s initials must be present on all sheets.

If sufficient data supports identification of an analyte, it will be qualitatively listed as present. Any metabolites detected may be reported as a metabolite of a specific parent drug (e.g. codeine metabolite), or simply identified by name (e.g. α-hydroxyalprazolam, norcodeine).

An analyst who is proficient in toxicology will administratively and technically review the case folder. The presence of a checklist signifies that both administrative and technical reviews have been performed.

Securing Evidence

All evidence shall be sealed, dated and initialed prior to being released to the evidence section for filing and storage.

References

- SOFT/AAFS Forensic Toxicology Laboratory Guidelines (available on-line)
- Toxi-Lab Training Manual
- United Chemical Technologies Applications Manual (UCT) (available on-line, on the Toxicology computer, and on disk)
Generalized Solid Phase Extraction Scheme

1. PREPARE SAMPLE
 Urine
 To 1 mL of 100mM phosphate buffer (pH=6.0) add internal standards. Add 2 mL of urine.
 Mix/vortex.
 Sample pH should be 6.0 ± 0.5.
 Adjust pH accordingly with 100mM monobasic or dibasic sodium diphosphate.
 Centrifuge as appropriate.

 Blood, Plasma or Serum
 To 1 mL of 100mM phosphate buffer (pH=6.0) add internal standards. Add 1 mL of sample and 4 mL of DI H2O.
 Mix/vortex and let stand 5 minutes.
 Centrifuge for 10 minutes at 2000 rpm and discard pellet.
 Add 2 mL 100mM phosphate buffer (pH 6.0). Mix/vorxes.
 Sample should be 6.0 ± 0.5. Adjust pH accordingly with 100mM monobasic or dibasic sodium phosphate.

2. CONDITION SPE CARTRIDGE
 1 x 3 mL CH3OH
 1 x 3 mL DI H2O
 1 x 1 mL 100mM phosphate buffer (pH=6.0)
 Note: Aspirate at < 3 inches Hg to prevent sorbent drying.

3. APPLY SAMPLE
 Load at 1 to 2 mL per minute

4. WASH COLUMN
 1 x 3 mL DI H2O
 1 x 1 mL 100mM acetic acid
 Dry column (5 minutes at > 10 inches Hg)
 1 x 2 mL Hexane

5. ELUTE ACIDIC AND NEUTRAL DRUGS (FRACTION 1)
 1 x 3 mL hexane/ethyl acetate (50:50);
 Collect elute at < 2 mL/minute
6. DRY ELUTE
 Evaporate to dryness at < 40°C.
 Reconstitute with 50 μL ethyl acetate.
 Place into vial insert and prepare for GC/MS analysis.

7. WASH COLUMN
 1 X 3 mL CH3OH; Aspirate
 Dry column (5 minutes at >10 inches Hg)

8. ELUTE BASIC DRUGS (FRACTION 2)
 1 X 3 mL CH2Cl2/IPA/NH4OH (78/20/2)
 Collect elute at 1 to 2 mL/minute
 Note: Prepare elution solvent fresh daily.
 Add IPA/NH4OH, mix, then add CH2Cl2 (pH 11-12)

9. DRY ELUATE
 Evaporate to dryness at < 40°C
 Reconstitute with 50 μL ethyl acetate.
 Place into vial insert and prepare for GC/MS analysis
 Note: Certain compounds are heat labile, such as amphetamines and PCP. A 1% HCl in CH3OH solution has been used to prevent volatization by formation of the hydrochloric salt of the drugs. Evaporate fraction 2 to approximately 100 μL, then add 1 drop of the solution. Continue to evaporate to dryness.

Negative and positive controls will be run with all batched urine casework specimens. The use of a suitable standard will be added to all samples and controls. Refer to Internal Standard Procedure (pg. 20).

For more specialized extraction schemes, consult the UCT manual
Liquid/Liquid Extraction Scheme

Add ~ 2 mL of blood to a Toxi-tube or equivalent extraction tube, fill the tube to the 5 mL line with DI water and mix for 1 to 2 minutes.

1. Toxi-tube A or similar extraction tube – All samples deemed appropriate by the analyst may be subjected to this extraction scheme to isolate basic drugs.

2. Toxi-tube B or similar extraction tube – All samples deemed appropriate by the analyst may be subjected to this extraction scheme to isolate acidic drugs.

3. If a specialized class of drug is indicated (i.e. benzoylecgonine, cannabinoids, benzodiazepines, GHB, etc.), it may be necessary to perform the specific extraction rather than a general extraction utilizing the appropriate Toxi-tube or similar extraction tube. In this case, follow the specialized extraction scheme outlined for that specific drug.

Negative and positive controls will be run with all batched blood casework samples. The use of a suitable standard will be added to all samples and controls. Refer to Internal Standard Addition Procedure (pg. 20).
Cannabinoid Extraction Scheme

- To 1 mL of whole blood add internal standard. Mix/vortex
- Add dropwise 2 mL of ice cold acetonitrile while mixing
- Vortex for approximately 30 seconds
- Centrifuge for 10 minutes at maximum rpm
- Transfer acetonitrile to a clean tube
- Adjust sample pH to 3.0 ± 0.5 with approximately 2.0 mL of 100mM Sodium Acetate buffer.
- Check pH of buffer to insure that pH value is ~ 3.0

- Condition extraction column with the following:
 1 x 3 mL CH₃OH
 1 x 3 mL DI H₂O
 1 x 1 mL Acetate buffer (pH 3.0).
 Note: Use gravity flow or minimal vacuum (< 3 inches Hg)

- Load sample onto column at 1 to 2 mL per minute.
 Note: Use gravity flow or minimal vacuum (<3 inches Hg)

- Wash the column with the following:
 1 x 2 mL DI H₂O.
 1 x 2 mL 100mM HCl/acetonitrile (95/5).
 Dry column with vacuum (> 5 inches Hg) for ~5 - 10 minutes.
 1 x 200 µL hexane; aspirate (Additional step to remove any residual moisture. Could substitute 200 µL MeOH for hexane)
 Note: The delta-9 THC (parent) will elute in hexane so special attention must be paid to not use more than 200 µL hexane in the wash/dry step. The 200 µL hexane wash step can be eliminated if the column is allowed to dry longer under vacuum or positive pressure gas flow.

- Elute THC and metabolites
 1 x 2 mL hexane (optional, contains delta-9 THC)
 1 x 3 mL hexane/ethyl acetate (50/50).
 Note: Use gravity flow or minimal vacuum to collect elute at 1 to 2 mL per minute

- Dry Eluate. Evaporate slowly to dryness at < 40° C.

- Derivatize by adding 50 µL MSTFA (with 1% TMCS) and 50 µL of ethyl acetate. React 30 minutes at 70° C. Remove from heat source to cool.
Note: Do not evaporate MSFTA solution.

- Analyze on GC/MS using appropriate method.

Negative and positive controls will be run with all batched blood casework samples. The use of a suitable standard will be added to all samples and controls. Refer to Internal Standard Addition Procedure (pg. 20).
Blood THC Liquid-Liquid Extraction

SAMPLE PREPARATION

Dilute 2 ml of blood to 8 mL with deionized water. (pH > 7.0)

EXTRACTION & HYDROLYSIS

- Extract blood with ethyl acetate/hexane (7:1)
- Make basic (~ pH 10) with 1 mL 1 N KOH (this step will hydrolyze glucuronide and extract THC)
- Organic top layer will contain Δ⁹ THC; retain in separatory funnel.
- Remove lower aqueous layer, containing CarboxyTHC
 Adjust pH to 5.0 with 1 M acetate buffer.
 Re-extract with ethyl acetate/hexane
- Combine both organic layers together and take to dryness

DERIVATIZATION

- Reconstitute with 25 μL ethyl acetate
- Derivatize with 25 μL MSTFA, cap and agitate.
- Heat for 15 minutes at 60 °C

ANALYSIS

- Inject ~ 1-2 μL into the GC/MS, using Cannabinoids Method

Negative and positive controls will be run with all batched blood casework samples. The use of a suitable standard will be added to all samples and controls. Refer to Internal Standard Addition Procedure (pg. 20).
Gamma Hydroxybutyrate (GHB) [by special request only]

A solid phase method for GHB extraction (United Chemical Technologies)

- To 200 μL unknown blood sample add 1 ml of acetone; vortex 15 seconds.
- Centrifuge; transfer acetone layer to culture tubes.
- Evaporate extracts
- Reconstitute the dried extracts with 200 μL of 0.1 Phosphate Buffer pH 6.0 buffer; vortex 15 seconds.

- Prepare Clean Screen® GHB (200 mg in a 10 ml tube)
 Extraction columns as follows:
 1 x 3 mL of CH₃OH; aspirate.
 1 x 3 mL of DI H₂O; aspirate.
 1 x 3 mL of 0.1 M Phosphate Buffer (pH 6.0); aspirate.
 Note: Aspirate using vacuum. Avoid drying sorbent completely.

- Apply sample with disposable pipette
- Elute GHB – Add 1 mL of CH₃OH/NH₄OH (99:1) to original sample test tube; vortex. Decant onto column and collect extract. Aspirate ~1 inch Hg.

- Concentrate – Remove test tube containing eluate. Evaporate to dryness.
- Derivatize – Add 100 μL of ethyl acetate and 100 μL of MSTFA with 1% TCMS. Mix/Vortex. No heating required.
- Inject on the GC/MS using the appropriate method.

- Can also extract a 2 mL sample of the whole blood two times with chloroform. Combine the chloroform extracts and evaporate to dryness with nitrogen. Reconstitute with 10 μL ethyl acetate and 10 μL MSTFA or BSTFA + 1% TMCS. See GHB Derivatization Procedure.

- Negative and positive controls will be run with all batched blood casework samples. The use of a suitable standard will be added to all samples and controls. Refer to Internal Standard Addition Procedure (pg. 20).
Trimethysilyl Derivatization Procedure

Certain drugs are not readily analyzed by GC/MS. They may be too polar, thereby giving broad, ill-defined peaks. Most of these drugs may be made more stable or less polar by derivatization. The drugs that readily derivatize with silation reagent will have an acid, alcohol, or secondary amine functional group.

Sample Hydrolysis and Extraction

- Extract from matrix by the approved method for the specific drug. See specific extraction method for the drug of interest.
- Place extract into a micro reaction vial.
- Evaporate organic solvent to dryness. Do not use any type of aqueous extract, since water reacts readily with the derivatizing reagent.

Derivatization

- Reconstitute the extract in ethyl acetate (~ 50 μL for urine; 50 μL for blood)
- Add derivatizing reagent (~50-150 μL for urine; ~50 μL for blood) to the residue. Either MSTFA or BSTFA may be used.
- Place the micro reaction vial in an oven or dry block heater at 60 °C for 15 minutes. If clonazepam is suspected, heat for one hour.

Analysis

Inject 1 μL of the reaction mixture into the GC/MS, using the appropriate method.
Internal Standard Procedure

Appropriate Internal Standards should be added to toxicology samples to verify completeness and precision of the various extraction methods utilized in the section. The two main extraction techniques utilized are solid phase and liquid/liquid. An aliquot of prepared ISTD should be added to all controls and case samples to verify extraction completeness. Additionally, as other components are incorporated into sample extraction, such as quantitation procedures, the ISTD method may be useful in helping verify extraction proficiency and instrumental quantitative precision.

All internal standards utilized should be verified by existing QA/QC measures before being placed into service. If 1 mg/mL commercially prepared stock solutions are not available, prepare 1 mg/mL solutions from powders. Weigh 10 mg of the free drug, transfer to a 10 mL volumetric flask and add quantity sufficient to bring up to volume with methanol, acetonitrile, or appropriate solvent (qs). Note: If using the salt form, determine the amount of the salt needed to equal 10 mg of the free drug, and weigh this amount. Stock solutions are stored capped in a refrigerator and are stable for three (3) years.

From the stock solutions, various working solutions may be made:

<table>
<thead>
<tr>
<th>Working solution concentration</th>
<th>amt stock used</th>
<th>volumetric flask dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>100μg/mL</td>
<td>1mL</td>
<td>10mL qs w/ MeOH</td>
</tr>
<tr>
<td>50μg/mL</td>
<td>500μL</td>
<td>10mL qs w/ MeOH</td>
</tr>
<tr>
<td>20μg/mL</td>
<td>200μL</td>
<td>10mL qs w/ MeOH</td>
</tr>
<tr>
<td>10μg/mL</td>
<td>100μL</td>
<td>10mL qs w/ MeOH</td>
</tr>
<tr>
<td>5μg/mL</td>
<td>50μL</td>
<td>10mL qs w/ MeOH</td>
</tr>
<tr>
<td>2μg/mL</td>
<td>20μL</td>
<td>10mL qs w/ MeOH</td>
</tr>
</tbody>
</table>

The equation to figure working solution concentration when starting with a stock solution of 1mg/mL is as follows: \((\text{amount of stock solution used in mL}) / (\text{final volume in mL}) \times 1000\). Therefore, if 250μL of stock solution is added to 10mL volumetric flask (qs) – the resulting concentration of the solution is \(0.250/10\times1000 = 25μg/mL\).

If different stock concentrations other than 1mg/mL are used, adjust the amount of stock used accordingly. For instance, if a concentration of stock is purchased at a level of 100μg/mL – the resulting measures take effect.
Internal standard concentrations for casework samples is therefore dependent on which working solutions the analyst will be using and the amount of specimen used from the casework sample. In other words, the amount of internal standard depends on the amount of ISTD added in μL and the concentration of the ISTD added (usually μg/mL).

For instance, if 30μL of a 20μg/mL ISTD solution added to 1mL sample of a negative blood control, then a total of 0.6μg of ISTD is in the negative control (0.03 * 20 = 0.6). Since the final volume is theoretically 1mL, then this control has an ISTD concentration of 0.6μg/mL. Another example would be if 100μL of a 20μg/mL ISTD solution is added to 1mL of a negative blood control, then the total ISTD present in the sample is 2μg (0.1 * 20 = 2μg). Since the final volume 1mL, then this control has an ISTD concentration of 2μg/mL.

Therefore, starting with ISTD working solution of 5μg/mL or 10μg/mL, the following concentration levels may be attained. All of the following solutions will be in 1mL negative blood control. Remember these will be theoretical calculations only. The amount of ISTD solution should be added to an amber screw top vial and evaporated under nitrogen before the control blood is added.
PPDLAB Toxicology Casework Samples:

Present volumes of samples used for toxicology exam include using 2mL of urine or 1 to 1.5mL of blood. Therefore, 40μL of a 5μg/mL ISTD solution added to 2.0mL of urine would yield a concentration of 0.10μg/mL or 100ng/mL and 30μL of a 5μg/mL ISTD solution added to 1.5mL of blood would yield a concentration of 0.10μg/mL or 100 ng/mL. If more specialized extraction techniques are utilized such as urine cannabinoids or benzodiazepines, the following additions should be added: For urine cannabinoids using 5mL of urine, use 100μL of a 5μg/mL ISTD solution. For urine benzodiazepines using 5mL of urine, use 100μL of a 5μg/mL ISTD solution.

INTERNAL STANDARDS CHART TO PREPARE A WORKING CONCENTRATION OF 5μg/mL

<table>
<thead>
<tr>
<th>Extraction - SPE or liq/liq</th>
<th>ISTD used (powder/base/conc)</th>
<th>Amount stock used for 5μg/mL working</th>
<th>Volume qs</th>
<th>Manuf</th>
<th>Product #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acidic</td>
<td>Thiopental - 1mg/mL</td>
<td>50μL</td>
<td>10mL</td>
<td>Sigma</td>
<td>T1019-10MG</td>
</tr>
<tr>
<td>Basic</td>
<td>Mepivacaine HCl - 1mg/mL</td>
<td>50μL</td>
<td>10mL</td>
<td>Sigma</td>
<td>M3189-1G</td>
</tr>
<tr>
<td></td>
<td>SKF-38393 HCl - 1mg/mL</td>
<td>50μL</td>
<td>10mL</td>
<td>Sigma</td>
<td>D047-500MG</td>
</tr>
<tr>
<td>Benzodiazepines</td>
<td>Prazepam - 1mg/mL</td>
<td>50μL</td>
<td>10mL</td>
<td>Sigma</td>
<td>P3654-25MG</td>
</tr>
<tr>
<td>Cannabinoids</td>
<td>11-OH Δ9-THC D3 - 100μg/mL</td>
<td>500μL</td>
<td>10mL</td>
<td>Cerilliant</td>
<td>H041</td>
</tr>
</tbody>
</table>
1. **Blood Sample Collection, Preservation and Storage**

 Collection

 Samples will be collected pursuant to *Texas Transportation Code*, §724.011 or *Texas Penal Code*, §22.011 or 22.021.

 Preservation and Storage

 - Blood samples submitted to the laboratory for blood alcohol/drug analysis will be in a suitable container. Preference is given to grey top vacutainer tubes but other tubes, such as red or lavender top vacutainer tubes, may be used.
 - All blood samples received will be documented with unique identifiers (laboratory number and analyst initials). The evidence will be secured and refrigerated until analysis is complete.

2. **Securing Evidence**

 All evidence shall be sealed with the analyst’s initials and date placed on the seal. The evidence will be transferred to Centralized Evidence Receiving to be filed after completion of analysis.

3. **Specimens other than Blood**

 All other specimens and samples will be obtained and secured in clean vials or containers, free from alcohol or drug contamination. Preservation with an antibacterial agent is not necessary. Due to the acidic pH of urine and the high alcohol concentration of some beverages (concentrations greater than about 20% v/v), bacteria will not survive. Mold, however, will grow in beer samples. It is recommended that all alcohol analysis of beverage samples be performed within 24 hours of receipt to insure that alcohol neoformation by bacteria is not a factor.

4. **Final disposition after analysis**

 When the biological evidence is no longer required for criminal prosecution, it should be destroyed following Universal Bloodborne Pathogen Precautions.
QUALITY ASSURANCE OF EQUIPMENT

1. Purpose
To establish quality assurance guidelines for the maintenance, calibration, and repair of analytical instrumentation, balances, and pipettes.

2. Maintenance and Calibration of Laboratory Instrumentation

General Requirements for Analytical Instrumentation
All instruments will be periodically maintained and properly calibrated in accordance with the manufacturer’s recommendations and specifications and/or laboratory policy. All instruments will be checked after being moved or if a major repair is performed.

Gas Chromatography

- Calibration
Gas Chromatographs must be calibrated during each analysis session with the exception that if the instrument is shut down between sampling batches, when reanalysis of a previously tested specimen is required, or a priority sample is submitted and the same analyst will perform the analysis, recalibration is not necessary if controls analyzed prior to sample analysis demonstrate linearity of the method and initial calibration was performed no more than a week prior. The use of additional control standards and/or frequency of recalibration may be determined by the laboratory.

The calibration and control standard charts or results will be maintained in a logbook, file, or electronically retrievable form. Calibration criteria specific to the instrument and calibration technique shall be established.

- Linearity Plots for Detectors
The linearity of each detector used must be proven across a wide range of ethanol concentrations. Standards for linearity confirmation must include the following four ethanol standards: 0.05, 0.10, 0.20, and 0.40.

The results of the linearity confirmation will be graphed as alcohol concentration versus detector response or area response ratio. The resulting graph should indicate a linear response across the range of standards tested. If the correlation coefficient (R) is less than 0.995, the issue should be investigated.
Gas Chromatograph Maintenance
Perform regular and preventative maintenance according to the manufacturer’s recommendations or as necessary. A logbook of all maintenance will be kept with the instrument.

Gas Chromatography/Mass Spectrometry (GC/MS)
Performance Verification Check
- The Mass Selective Detector (MSD) should be tuned monthly before use or more often as needed (such as when carrier gas is changed or mass assignment fails a quality check).
- The instrument should be tuned according to the manufacturer’s instructions and must meet the manufacturer’s specification. If the manufacturer’s specifications are not met, the instrument will be removed from service until it is repaired.
- A cocaine standard should be run monthly and the scan results entered in the logbook and maintained with the tune report for that month. If the m/z ratios of 303, 182, and 82 vary by one or more, the instrument will be re-tuned and the standard re-run. If the re-tuning does not correct the discrepancy, the instrument will be removed from service until it is repaired.
- Maintain a logbook with the results.

Other GC/MS Maintenance
- Run a solvent blank before each sample run. A copy of the blank run should be maintained with the case file.
- Perform regular and preventive maintenance according to the manufacturer’s recommendations. A logbook documenting all non-routine maintenance (e.g. column replacement, filament replacement, seal replacement, vacuum oil changes, source cleaning, and major repairs) will be kept with the instrument.

Mechanical Pipette Performance Verification Check
Pipettes must be tested for accuracy and precision once a year. Calibration may be performed by an approved outside source or may be accomplished by personnel within the laboratory according to the laboratory’s specification.
An record of the performance verification check, calibration, and any adjustment(s) will be maintained.
Analysis for Poisons

Purpose

The analysis for poisons involves a broad range of testing procedures in order to address the myriad of compounds that could be involved. It is impossible to write a procedural approach that will include every possible poison. A systematic scheme can be used for most cases.

The most important information is a case history or profile. View the officer’s offense report and/or call and discuss the case with the investigating officer. Find out the subject’s medical history, if applicable. For example, if the patient complains of severe burning and has blackened lips, suspect a caustic substance like lye. If a subject complains of diarrhea after eating or drinking, suspect a possible laxative such as phenolphthalein. If a coffee pot smells strongly of gasoline, suspect tampering with gasoline.

Since there are so many different compounds and chemicals, this laboratory may defer analysis to another laboratory better equipped to handle some types of cases

General Poison Scheme

1. Preparation
 Observations can reduce analysis time. The colors and odors of the unknown are useful in determining the proper course for analysis. For example, blue crystals may indicate copper sulfate, a liquid with a chlorine odor may indicate sodium hypochlorite (bleach), and a brownie that turns pink in a basic solution could have phenolphthalein mixed in it.

 A. Visual observations
 • color
 • viscosity
 • solid or liquid
 • microscopic shape (cubic, rhombic, amorphous, etc.)
 • other
 B. Olfactory observations
 • distinct odor present (pesticide odor, etc.)
 • no odor
 C. ph
 D. Solubility
Check with various liquids (water, methanol, ether, chloroform, etc.) to determine the solubility of the unknown.

Caution: If the unknown is suspected to be cyanide, add acid slowly in the hood.

2. **Methods to isolate unknown from the matrix:**

 A. Acid-steam distill
 B. Microdiffusion
 C. GC and/or GC/MS of any volatiles or organics collected
 D. Check for volatile reducing agents such as alcohols, aldehydes, acetone, sulfides. Also cyanide, phosphorus, halogenated hydrocarbons, organic nitrites.
 E. FTIR

3. **Initial tests to eliminate organic compounds (this could be performed first depending on the case history)**

 A. Screening Tests
 B. Toxi-Lab A extraction scheme. Sample must have a pH of ~9 (if lipids present, use the lipid procedure given in the Toxi-Lab compendium)*
 C. UV
 D. GC/MS
 E. FTIR
 F. GC-HS
 G. Flame test (for solids)
 Place a small amount of material into a small culture tube and heat directly over an open flame. If the material chars, organics could be present. If the material simply dries and turns to ash, an inorganic could be present.

 * Toxi-Lab A extraction works successfully on substances like strychnine and capsaicin (ingredient in hot peppers). Substances confirmed by GC/MS analysis.

 If all the tests above are negative, suspect possible presence of an inorganic substance, heavy metal, pesticide, etc.
4. Inorganic analysis

The following tests are a general scheme for identifying an inorganic unknown. If a particular substance is suspected, refer to the official tests for its identity listed in various books and manuals:

Analytical Procedures for Therapeutic Drug Monitoring and Emergency Toxicology (Randall C. Baselt)
Handbook of Emergency Toxicology (Sydney Kaye)
Isolation and Identification of Drugs (E.G.C. Clarke)
Merck Index
The National Formulary
Pharmacopeia of the United States
Spot Tests in Inorganic Analysis (Feigl/Anger)

Another valuable resource is through the Internet and by contact with other crime laboratories doing poison analysis.

A. Test for sulfur

1. 1 ml filtrate + 3 drops 10% freshly prepared sodium nitroprusside solution = violet color that fades away
2. 1 ml filtrate + 3 drops dilute lead acetate = black precipitate (lead sulfate)

B. Test for nitrogen

1. Gently boil 3 ml filtrate + 5 drops 10% NaOH + 5 drops dilute ferrous sulfate solution for ~0.5 minutes.
2. Add 10% HCl drop wise until brown precipitate just dissolves. Add 1 drop in excess = prussian blue precipitate (nitrogen present)

C. Test for halogens

1. When sulfur and nitrogen are both absent:
 a. Acidify 2 ml filtrate with dilute nitric acid.
 b. Add 1 ml dilute (10%) silver nitrate solution.
 white precipitate = chlorine
 brown precipitate = bromine
 yellow precipitate = iodine
2. When either sulfur or nitrogen is present:
 a. Add dilute sulfuric acid to filtrate until slightly acidic (filter if cloudy).
 b. To 2 ml filtrate, add 1 ml nitric acid + 1 ml of 10% silver nitrate solution = precipitate (halides present).

D. Detection of negative radicals
 Using silver nitrate, nitric acid, and barium chloride:
 Note: (+) = precipitate formed
 (-) = no precipitate formed (or disappeared)
 1. \(\text{AgNO}_3(+) + \text{HNO}_3(-) = \text{BaCl}_2(+)\) chloride, bromide, iodide, thiocyanate, hypochlorous acids
 2. \(\text{AgNO}_3(+) + \text{HNO}_3(-) = \text{BaCl}_2(-)\) nitrous acid, cyanide
 3. \(\text{AgNO}_3(+) + \text{HNO}_3(-) = \text{BaCl}_2(-) + \text{HNO}_3(-)\) sulfite, phosphorus, carbonic, oxalic iodic, boric, selenic, telluric acids
 4. \(\text{AgNO}_3(+) + \text{HNO}_3(-) = \text{BaCl}_2(+) + \text{HNO}_3(-)\) phosphoric, arsenic, arsenous chromic acids; thiosulfate
 5. \(\text{AgNO}_3(-) = \text{BaCl}_2(-)\) nitric, chloric, perchloric acids
 6. \(\text{AgNO}_3(-) = \text{BaCl}_2(-) + \text{HNO}_3(+)\) sulfate, fluoride

E. Specific Screening Tests
 All screening tests shall be performed using both positive and negative controls simultaneously. The screening tests listed are not complete. Refer to a reference to obtain identifying screening tests for the specific suspected unknown:

<table>
<thead>
<tr>
<th>Screening Test</th>
<th>Result</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>dilute HCl</td>
<td>+ Cl(_2)↑</td>
<td>ClO</td>
</tr>
<tr>
<td>Silver nitrate</td>
<td>+ white ppt</td>
<td>Cl</td>
</tr>
<tr>
<td>Ammonium Hydroxide</td>
<td>+ white ppt</td>
<td>Mg(^{+2})</td>
</tr>
<tr>
<td>Barium chloride</td>
<td>+ white ppt</td>
<td>SO(_4^{2-})</td>
</tr>
<tr>
<td>Lead acetate</td>
<td>+ white ppt</td>
<td>SO(_4^{2-})</td>
</tr>
<tr>
<td>Schönbein test</td>
<td>+ blue</td>
<td>CN</td>
</tr>
<tr>
<td>Tumeric(^\circledR) paper</td>
<td>+ red brown</td>
<td>B(_4)O(_7^{2-}) (borates)</td>
</tr>
</tbody>
</table>
F. Inorganic Acids

Acids can be analyzed with the use of silver and barium nitrate precipitation tests and by reacting with ammonium hydroxide to form ammonium salts. The salts can be isolated and identified by FTIR.

Prepare several solutions each by adding 1-2 drops of the acid to ~1 ml of deionized water. Screen for acids using silver nitrate, barium nitrate and basic barium nitrate.

1. Silver Nitrate
Add 1-2 drops of 5% silver nitrate. If a precipitate forms, add concentrated ammonium hydroxide and observe to see if the precipitate dissolves.

2. Barium Nitrate
Add 1-2 drops of 5% barium nitrate. Observe for precipitation formation.

3. Basic/Barium Nitrate
Add 1-2 drops of 50% NaOH. The pH must be basic. Add more NaOH if necessary. Add 1-2 drops of 5% barium nitrate and observe for precipitation formation.

4. Ammonium salt, completely ionized
Add 0.5 ml ammonium hydroxide to a 50 ml beaker. Slowly add 1-2 drops of the acid to the ammonium hydroxide. The pH must be >8.0. Add ~40 ml acetone to the beaker to precipitate the ammonium salt. Filter and air dry the precipitate. Analyze by FTIR.
Results of Precipitation Tests

<table>
<thead>
<tr>
<th>Acid</th>
<th>Silver Nitrate</th>
<th>Ammonium Hydroxide</th>
<th>Barium Nitrate</th>
<th>Basic/Barium Nitrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydriodic</td>
<td>No precipitate</td>
<td>White precipitate</td>
<td>No precipitate</td>
<td>No precipitate</td>
</tr>
<tr>
<td>Hydrobromic</td>
<td>Pale yellow precipitate</td>
<td>Dissolves</td>
<td>No precipitate</td>
<td>No precipitate</td>
</tr>
<tr>
<td>Hydrochloric</td>
<td>White precipitate</td>
<td>Dissolves</td>
<td>No precipitate</td>
<td>No precipitate</td>
</tr>
<tr>
<td>Hypophosphorous</td>
<td>Black precipitate</td>
<td>No change</td>
<td>No precipitate</td>
<td>No precipitate</td>
</tr>
<tr>
<td>Sulfuric</td>
<td>No precipitate</td>
<td>N/A</td>
<td>White precipitate</td>
<td>White precipitate</td>
</tr>
<tr>
<td>Phosphoric</td>
<td>No precipitate</td>
<td>N/A</td>
<td>No precipitate</td>
<td>White precipitate</td>
</tr>
<tr>
<td>Nitric</td>
<td>No precipitate</td>
<td>N/A</td>
<td>No precipitate</td>
<td>No precipitate</td>
</tr>
<tr>
<td>Phosphorous</td>
<td>No precipitate</td>
<td>N/A</td>
<td>No precipitate</td>
<td>No precipitate</td>
</tr>
</tbody>
</table>

Caution: Violent reactions may occur when mixing strong acids (particularly sulfuric acid) and strong bases. Before mixing with ammonium hydroxide, dilute the acids.

Ammonium hypophosphite and phosphate generate phosphine gas when heated. Ammonium nitrate is explosive when mixed with organic solvents and an ignition source. When making and disposing of the ammonium salts, **extreme caution should be used.**

G. Heavy Metals

The modified Reinsch’s test is used to identify and differentiate mercury, arsenic, antimony, and bismuth. See *Handbook of Emergency Toxicology*, page 48-54 for detailed instructions.
Add together:
1. 10-15 grams of body fluid, tissue homogenate, etc.
2. 3 ml concentrated HCl
3. small copper spiral wire or strip

Heat gently for 1-2 hours (bismuth requires 2 hours). Examine the copper for deposition. The result must be compared to both positive and negative controls.

<table>
<thead>
<tr>
<th>Deposit Color</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>silvery</td>
<td>mercury</td>
</tr>
<tr>
<td>shiny black</td>
<td>bismuth</td>
</tr>
<tr>
<td>dull black</td>
<td>arsenic</td>
</tr>
<tr>
<td>purple</td>
<td>antimony</td>
</tr>
</tbody>
</table>

A purple deposit dissolved by 10% KCN indicates selenium, tellurium or sulfur.

H. Pesticides
Pesticides will normally be organic in nature. If a proper case history is conducted, the pesticide in question will be limited to only a handful of possibilities. Have the investigating officer canvass the crime scene and collect all possible “poisons” related to the symptomology.

Most pesticides can be chromatographed or identified by FTIR. For those pesticides that are inorganic in nature, follow the inorganic identification scheme. Always obtain a control standard for comparison.

5. Quality Control
If after the preliminary testing the material is suspected of being one specific compound, it is imperative that a sample of the suspected compound be subjected to the same tests as the known to ensure accurate identification of the compound. A negative control shall also be tested.
6. **Reporting**
Reports should follow laboratory guidelines. The format may be decided on a case by case basis. The case folder will be administratively and technically reviewed by qualified personnel.

7. **Securing Evidence**
Evidence will be secured and handled on a case by case basis. Some samples may not be suitable for long term storage.
ETHANOL QUANTITATION PROCEDURE

Purpose
Blood and alcoholic beverages are submitted to the laboratory for determination of alcoholic content. Analysis will be performed using a capillary column headspace gas chromatography technique with n-propanol as an internal standard. Alcohol analysis using this method provides simultaneous quantitation and confirmation of alcohol. Two aliquots of samples from each specimen will be analyzed. The results of each aliquot must demonstrate acceptable precision and accuracy.

TABLE OF CONTENTS

Ethanol Solutions..2
n-Propanol Internal Standard Solutions..5
Volatile Mixture Standard Solutions..6
Method...8
Uncertainty of Measurement...17
Blood Collection, Preservation, Storage, and Disposal...20
Quality Assurance of Equipment..21
References...23
Appendix 1: Texas Alcoholic Beverage Code Definitions...24
ETHANOL SOLUTIONS

1. Purpose
To establish guidelines for preparing ethanol calibrators, standards, and controls for ethanol quantitation in unknown samples. The ethanol quantitation method is based on a four-point calibration for the non-dilution method (using 0.05, 0.10, 0.20, and 0.40 grams/100 milliliters) and a six-point calibration for the dilution method (using 0.025, 0.05, 0.10, 0.20, 0.30, and 0.40 grams/100 milliliters). Additional alcohol solutions are used as controls. Analysis of purchased ethanol standard controls will verify the accuracy of the calibration, validate that the solutions were properly prepared, and are used in detector response linearity checks.

2. Solutions
- Ethanol calibrators and standards at various concentrations depending on the method used

3. Equipment and Supplies Needed
- Volumetric flasks
- Volumetric TD (to deliver) pipettes

4. Reagents
- Ethyl Alcohol – anhydrous, 200 proof or 190 proof (meets or exceeds ACS Grade)
- Deionized (DI) Water

5. Preparation of Solutions
Label the concentration of each solution on the flask. The preparer’s initials and date of preparation must be recorded and maintained in a logbook, file, or on the container. Allow all solutions to equilibrate to room temperature before using.

10% w/v Ethanol Stock Solution (10 grams/100 milliliters)
Pipette 12.66 ml of 200 proof ethanol (or 13.33 ml of 190 proof ethanol; or weigh 10 grams of 200 proof ethanol on the analytical balance) into a 100 ml volumetric flask containing approximately 50 ml of DI water. Dilute appropriately with DI water and mix thoroughly.
Ethanol Calibrators
All calibrators will be purchased commercially and be NIST traceable.

Ethanol Standards
All standards will be purchased commercially and be NIST traceable.

Blood Ethanol Controls
All blood ethanol controls are purchased commercially. Each time a new control lot of whole blood ethanol is received, a GC quantitation run consisting of at least 15 samples will be performed. This run will establish a mean ethanol concentration value for the control.

Ethanol Controls
Ethanol controls will be made in-house using the ethanol stock solution. Add the following amounts of stock solution into a 100 ml volumetric flask containing approximately 50 ml of DI water. Dilute appropriately with DI water and mix thoroughly.

<table>
<thead>
<tr>
<th>Ethanol Concentration</th>
<th>Stock Solution Volume/100 ml DI Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.020% (0.020 grams/100 ml)</td>
<td>0.20 ml</td>
</tr>
<tr>
<td>0.040% (0.040 grams/100 ml)</td>
<td>0.40 ml</td>
</tr>
<tr>
<td>0.080% (0.080 grams/100 ml)</td>
<td>0.80 ml</td>
</tr>
<tr>
<td>0.160% (0.160 grams/100 ml)</td>
<td>1.6 ml</td>
</tr>
<tr>
<td>0.320% (0.320 grams/100 ml)</td>
<td>3.2 ml</td>
</tr>
<tr>
<td>0.640% (0.640 grams/100 ml)</td>
<td>6.4 ml</td>
</tr>
<tr>
<td>0.050% (0.050 grams/100 ml)</td>
<td>0.5 ml</td>
</tr>
<tr>
<td>0.100% (0.100 grams/100 ml)</td>
<td>1.0 ml</td>
</tr>
<tr>
<td>0.200% (0.200 grams/100 ml)</td>
<td>2.0 ml</td>
</tr>
<tr>
<td>0.400% (0.400 grams/100 ml)</td>
<td>4.0 ml</td>
</tr>
<tr>
<td>0.250% (0.250 grams/100 ml)</td>
<td>2.5 ml</td>
</tr>
</tbody>
</table>

6. Quality Control
The concentration of all in-house prepared control solutions must be verified by analysis and compared to proven standards and/or purchased standards. Results must be within 10% of the stated value or within 0.01 gram/100 ml for standards less than 0.10%. If the results are not within these values, the control solutions cannot be used for casework.

- The analysis values for standards or controls above 0.10 g/100 ml should fall within the specified 10% range.
- The analysis values for standards or controls below 0.10 g/100 ml should fall within the specified ± 0.01 g/100ml range.
- Record the results in a logbook or a file.
- If a result is not within allowable variance of the expected value, it will be documented and reanalyzed at a later date. If during the second analysis the result remains outside of the allowable range, the standard or control solution will be freshly prepared and analyzed.
- Reanalyze the calibration standard curve to confirm the nature of the lack of precision. If the discrepancy is confirmed, prepare new calibration standards.

The initial verified data will be placed in the quality control file and labeled with all pertinent information including the lot number, source, date of preparation, and initials of the analyst who performed the test.

If a certificate of analysis is received for a purchased standard, place it in the quality control book.

7. **Storage, Expiration, and Disposal**

Store solutions at room temperature or refrigerate. Shelf life is approximately one year. Dispose of solutions that are expired.

Monitor the expiration date of purchased ethanol controls. Dispose of solutions that are expired.
n-PROPA NOL STANDARD SOLUTIONS

1. Purpose
 To establish guidelines for preparation of n-propanol solutions for use as an internal standard in determining the concentration of ethanol.

2. Equipment and Supplies Needed
 - Volumetric flasks
 - Volumetric TD (to deliver) pipettes

3. Reagents
 - n-Propanol (meets or exceeds ACS Grade)
 - Deionized (DI) water

4. Preparation of Solutions
 Although the actual concentration of the n-propanol present in the sample vials is not critical, it is imperative that the concentration remain constant for every vial throughout the entire sampling batch.
 Label the flask of each solution. The preparer’s initials and date of preparation must be recorded and maintained in a logbook, file, or on the container. Allow all solutions to equilibrate to room temperature before using.

 Stock Solution (10% w/v)
 Pipette 12.5 ml of n-Propanol (or weigh 10 grams of n-propanol on the analytical balance) into a 100 ml volumetric flask containing approximately 50 ml of DI water. Dilute appropriately with DI water and mix thoroughly.

 Working Solution (0.10% w/v)
 Pipette 1.0 ml of stock solution (or weigh 1 gram on the analytical balance) into a 100 ml volumetric flask containing approximately 50 ml of DI water. Dilute appropriately with DI water and mix thoroughly.

5. Storage, Expiration, and Disposal
 Store solutions at room temperature or refrigerate. Shelf life is approximately one year. Dispose of solutions that are expired.
VOLATILE MIXTURE STANDARD SOLUTIONS

1. Purpose
The aqueous volatile mixture standard solution may be used in the ethanol quantitation procedure to validate chromatographically the separation of various volatile substances and potential contaminants from ethanol.

2. Equipment and Supplies Needed
- Volumetric flasks
- Volumetric pipettes (TD)
- Disposable pipettes

3. Reagents
- Acetone (meets or exceeds ACS Grade)
- Ethanol at 190 or 200 proof (meets or exceeds ACS Grade) or use ethanol stock solution
- Isopropanol (meets or exceeds ACS Grade)
- Methanol (meets or exceeds ACS Grade)
- Acetaldehyde (meets or exceeds ACS Grade)
- Deionized (DI) water

4. Preparation of Solutions
Label the flask of each solution. The preparer’s initials and date of preparation must be recorded and maintained in a logbook, file, or on the container. Allow all solutions to equilibrate to room temperature before using.

Blood Volatile Controls
All blood volatile controls are purchased commercially. Each time a new control lot of whole blood volatile is received, a GC quantitation run consisting of at least 15 samples will be performed. This run will establish a mean ethanol concentration value for the control along with verification of other volatiles (acetone, isopropanol, methanol, and acetaldehyde).
Volatile Controls

Pipette the following reagent volumes into a 100 ml volumetric flask containing approximately 50 ml of DI water. Dilute appropriately with DI water and mix thoroughly.

- 64 µl acetone
- 127 µl isopropanol
- 224 µl methanol
- 200 µl acetaldehyde
- 133 µl of 190 proof or 140 µl of 200 proof ethanol

Alternatively, add the weights of the following reagents into a 100 ml volumetric flask containing approximately 50 ml of DI water. Dilute appropriately with DI water and mix thoroughly.

- 25 mg acetone
- 25 mg isopropanol
- 50 mg methanol
- 50 mg acetaldehyde
- 525 mg of 190 proof or 500 mg of 200 proof ethanol

The chemist may alter these levels in order to produce the best chromatograph.

5. Storage, Expiration, and Disposal

Store solutions at room temperature or refrigerate. Shelf life is determined by loss of components. Solution is quality tested using the Ethanol Quantitation Procedure by Gas Chromatography.
METHOD

1. Purpose

The ethanol concentration of a biological specimen or other liquid specimen can be determined by gas chromatography headspace technique, using an internal standard. Other volatile substances can be qualitatively identified.

2. Equipment and Supplies

- Gas chromatograph with dual flame ionization detection, data collection, and reporting system and two capillary chromatographic columns
- Headspace auto sampler
- Crimp top clear glass headspace vials, 20 ml (23 x 75 mm)
- Crimp style caps (20 mm)
- Crimper (20 mm)
- Large orifice pipette tips, 200 µl, and seals (if necessary) for pipetter
- Single channel positive displacement or air displacement micro dispenser pipetter
- Dilutor/dispenser pipetter
- 50 ml disposable beakers
- Disposable pipettes

3. Safety

Universal Bloodborne Pathogen Precautions should be implemented when handling and manipulating blood specimens. Personal protective equipment during sample preparation should include: eye protection, lab coat, surgical mask, and nonporous polymer gloves (latex, nitrile, neoprene, etc.). Proper disinfecting of all contaminated surfaces is required.

Inoculation for hepatitis B is recommended for analysts who will be handling body fluid specimens.

Use appropriate safety equipment and personal protective equipment when preparing reagents and handling volatile chemicals.
4. Chemicals
 - Ethanol calibration, standard, and control solutions (prepared or purchased)
 - n-Propanol internal standard working solution
 - Volatile mixture solution
 - NaCl (ACS certified or reagent grade)
 - Ammonium Sulfate (ACS certified or reagent grade)
 - Deionized (DI) water

5. Calibration, Standards, and Controls
 Ethanol Calibration
 - Standard calibration curves are based on four-points, using 0.05, 0.10, 0.20, and 0.40 grams/100 ml, or six-points, using 0.025, 0.05, 0.10, 0.20, 0.30, and 0.40 grams/100 ml. Existing values from previous calibrations will be cleared and replaced.
 - Calibration will be performed prior to analysis of each batch of case samples with the exception that if the instrument is shut down between sampling batches, when reanalysis of a previously tested specimen is required, or a priority sample is submitted and the same analyst will perform the analysis, recalibration is not necessary if standards or controls analyzed prior to sample analysis demonstrate linearity of the method and initial calibration was performed no more than a week prior.
 - The results of the linearity confirmation will be graphed as alcohol concentration versus detector response or area response ratios. The resulting graph should indicate a linear response across the range of standards tested. If the correlation coefficient (R) is less than 0.995, the issue should be investigated and the instrument should be recalibrated as necessary.
 - If the calibration is accepted, retain a copy of the calibration graph and data with the batch run.

 Standards and Controls
 - At least one ethanol control at a concentration to be determined by the analyst must be run. If possible, the standard should be NIST traceable.
 - Analysis results must be within 10% of the target value or within 0.01 gram/100
ml for controls and standards with concentrations less than 0.10%.

- Additional ethanol controls may be analyzed at the analyst’s discretion.

Non-Ethanol Solutions

- Aqueous or blood matrix blank
 At least one aqueous or blood matrix blank will be analyzed at the beginning of the sample run to condition the system for the following ethanol run.

- Aqueous volatile mixture
 At the discretion of the analyst, a volatile mixture solution sample may be analyzed within a run sequence to demonstrate that ethanol and other volatiles are chromatographically separated and identified in an unknown mixture.

- n-Propanol internal standard
 An aliquot of an aqueous solution of n-propanol is added to each calibration standard, check standard, control, and sample to function as an internal standard.

- 1M ammonium sulfate solution
 An aliquot of an aqueous solution of 1M ammonium sulfate is added to each calibration standard, check standard, control, and sample to maximize the headspace ethanol concentration. Briefly, 33.0 grams ammonium sulfate is dissolved per 250 ml of DI water.

6. **Preparation of Calibrator, Standard, Control, and Specimen Sample Vials**

Allow specimens, controls, standards, etc. to equilibrate to room temperature prior to sampling.

For each blood sample undergoing blood alcohol analysis, two samples will be prepared and analyzed. Controls, standards, and calibrators only require one sample to be prepared and analyzed.

Label each 20 ml headspace vial with identifying information (i.e. case number, calibrator concentration, control concentration, etc.). Have ready for assembly: caps and septa, crimper and prepared controls. **All vials must be capped and crimped immediately after addition of calibrators, standards, controls, and samples.** Prepare and crimp each vial individually; do not pre-prepare a set of vials with internal standard, allowing a delay in addition of sample, calibrator, standard, or control before crimping.
Homogenizing

- Mix samples using a mechanical mixer for a minimum of 10 minutes or gently invert all sample vials 8-10 times 15 minutes prior to sampling to ensure proper mixing and record any observations of abnormality on the worksheet.
- Observe the blood specimen for the presence of clots. If clots are present, homogenize the blood specimen with the homogenizer. Record the condition of the specimen (clotted, decomposed, etc.). Re-cap the specimen and allow it to stand for at least 15 minutes before sampling. Bubbles present in the sample caused by homogenization agitation will affect analysis results. If any clots remain, the fluid portion of the specimen may be analyzed.

Sample Preparation

Add approximately 750 μl of 1M ammonium sulfate solution into each vial. Using the air or positive displacement pipetter, add 150 μl of n-propanol to the sample vial. Then add 150 μl of the blood, calibrator, standard, or control to the sample vial. Alternatively, a non-dilution alcohol method may be run which utilizes:

- 200 μl of internal standard
- 200 μl of unknown/calibrator/standard/control
- 300 mg of sodium chloride

Dispose pipette tips and any other material (Kimwipes®, paper towels, gloves, etc.) in contact with biological fluid into the biohazard disposal container. Follow all safety precautions.

Crimping glass headspace vials

Quickly cap the vial and seal by crimping. Assure uniform crimping by rotating the vial and re-crimping.

7. Alcoholic Beverage Samples

Dilute an alcoholic beverage sample using the following guidelines:

- If a beverage is yellowish and beer is suspected, dilute 1:50.
- If a distilled beverage is suspected, i.e. rum, scotch, vodka, etc., dilute 1:100.
- Use odor as a screening test for the possible type of beverage.
Additional dilution factors may be used as warranted.

Dilute the sample with deionized water in a 10 ml volumetric flask. Either 200 ul (1:50 dilution) or 100 ul (1:100 dilution) of sample is added to the volumetric flask.

Sample results must be multiplied by the dilution factor before reporting (e.g. for beer that is diluted 1:50, a result of 0.075 obtained will be 3.75 grams/100 ml or 3.7% w/v). The dilution factor may also be entered during the programming of the batch analysis.

8. Headspace Gas Chromatographic Analysis

Consult the instrument operations manual for proper operation of the Agilent 7890A gas chromatograph and Agilent G1888A headspace analyzer.

The Agilent 7890A has the ability to perform dual column analysis of blood alcohol concentrations. The analysis by the second column is considered a confirmatory test in the forensic community (only if the same analyte elution order on the second column is different from the first column). A GC/MS may also be run at the discretion of the analyst.

To initiate a sample run using the Agilent 7890A and G1888A:

1. Fill in appropriate cells on sequence table (Sample type, Levels, Description, Sample amt., vial position, etc)
2. Sample amount is always 0, multiplier in most cases is 1
3. Direct data handling to the desired path
4. Save the sequence list to a unique name (ex. 021408)
5. Simulate the sequence by clicking on simulate sequence to verify necessary info
6. Load vials in appropriate headspace analyzer positions
7. Hit run sequence
8. Sample queue will begin at this point

*As of January 2013, the operation of the 7890A Gas Chromatograph and G1888A Headspace Analyzer has been synched by new control software. It is now only necessary to generate a sequence on the 7890A software at which point the sequence will now control the operation of the Gas Chromatograph and Headspace Analyzer.
Example sample load list

<table>
<thead>
<tr>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-Propanol standard</td>
</tr>
<tr>
<td>NPW</td>
</tr>
<tr>
<td>Blank</td>
</tr>
<tr>
<td>Blank</td>
</tr>
<tr>
<td>Calibration – level 1</td>
</tr>
<tr>
<td>0.025% Standard</td>
</tr>
<tr>
<td>Calibration – level 2</td>
</tr>
<tr>
<td>0.05% Standard</td>
</tr>
<tr>
<td>Calibration – level 3</td>
</tr>
<tr>
<td>0.10% Standard</td>
</tr>
<tr>
<td>Calibration – level 4</td>
</tr>
<tr>
<td>0.20% Standard</td>
</tr>
<tr>
<td>Calibration – level 5</td>
</tr>
<tr>
<td>0.30% Standard</td>
</tr>
<tr>
<td>Calibration – level 6</td>
</tr>
<tr>
<td>0.40% Standard</td>
</tr>
<tr>
<td>Blank</td>
</tr>
<tr>
<td>Blank</td>
</tr>
<tr>
<td>Control Sample</td>
</tr>
<tr>
<td>determined by analyst</td>
</tr>
<tr>
<td>Blank</td>
</tr>
<tr>
<td>Blank</td>
</tr>
<tr>
<td>Case specimen loaded with any controls inserted as deemed appropriate by the analyst</td>
</tr>
<tr>
<td>End – Laboratory ethanol standard determined by the analyst</td>
</tr>
</tbody>
</table>

- Click “Run” on sequence screen.

9. Data Analysis

Evaluation of Ethanol Standard and Control Results

Results must be within 10% of the stated value or within 0.01 gram/100 ml for controls and standards less than 0.10%. If results fall outside these specified ranges, the associated control(s) or standard(s) will be reevaluated a second time within a week of initial analysis. If after the second analysis the result remains outside the allowable range, the control or standard must be revalidated. Invalidation of casework due to controls or standards falling outside of the allowable range will remain at the analyst’s discretion.

Evaluation of Sample Results
Sample analysis results from duplicate analysis will be combined to determine the calculated mean blood ethanol concentration of a sample, as shown below. The calculated mean will be truncated to three decimal places.

\[
\frac{(\text{Col A}_1 + \text{Col A}_2 + \text{Col B}_1 + \text{Col B}_2)}{4} = \text{calculated mean}
\]

Once the calculated mean has been determined, all sample analysis results must agree within 5% of this value:

Sample analysis results \((A_1, A_2, B_1, \text{ and } B_2)\) must be \(\leq 5\%\) of the calculated mean.

If any of the sample analysis results are greater than 5% of the calculated mean, they will be deemed unacceptable and the sample will be re-analyzed. The unacceptable results will be included in the case record.

The calculated mean will be used as the reported value for each sample analysis.

Conditions for Reanalysis

- If the results do not meet the above specifications, sample preparation and analysis may be repeated one time.
- If the reanalysis meets the above specifications, the results will be used for reporting.
- If after two analyses the homogeneity tolerance for each run exceeds 5%, the lowest obtained blood alcohol value from all eight results will be used with its associated measurement uncertainty if the homogeneity tolerance of each run is within 10%. Any further attempts should be investigated and discussed with the technical leader and Quality Manager.

10. Analysis by GC/MS

The blood sample may be analyzed using the Agilent GC/MS if desired to provide an additional ethanol confirmation method.

- If available, the red top vacutainer should be used for this confirmation.
- If the red top vacutainer is not available, the grey top vacutainer may be used.
- If the grey top vacutainer is used, approximately one milliliter of the sample should be spun down in a high speed centrifuge.
- The resulting supernatant liquid should be used for the GC/MS confirmation.
- Prepare the sample for analysis by adding 500 µl of the n-propanol internal standard to a GC/MS analysis vial.
Add 500 μl of the sample to the same vial.

Cap and label the vial accordingly.

Additional vials containing known ethanol concentrations may be prepared and processed accordingly.

The BLDETOH Method on the Agilent is utilized for analysis of the sample. This method requires changing the injection liner and syringe to facilitate the ethanol analysis. The syringe used should be new or vacuum/heat cleaned to remove any contaminating solvents.

Inject an air blank between each sample to ensure there is no contamination or carryover from a previous sample.

This confirmation procedure may also be used to screen for ethanol in a blood sample due to the speed of confirmation. For detailed instructions on the use of the Agilent GC/MS, refer to the Agilent section in the Controlled Substances Training Guide CS-TG 09.

11. Reporting Ethanol Concentration

The calculated mean will be used as the reported value for sample analysis with the exception that if after two analyses the homogeneity tolerance for each run exceeds 5% for a given sample, the lowest obtained blood alcohol value from all eight results will be used with its associated measurement uncertainty if the homogeneity tolerance of each run is within 10%.

Blood drug analysis will be required for all sample results with a reported ethanol concentration value less than 0.08 g/100 ml. Sample results with a reported ethanol concentration value greater than 0.08 g/100 ml may be subjected to blood-drug analysis at the discretion of the forensic chemist.

All alcohol results will be reported to the third decimal place.

- **Blood sample results** will be reported in units of "grams of alcohol per 100 milliliters of blood".
- If a blood sample required homogenization, the report should indicate "Due to clotting the sample required homogenization prior to analysis."
- Alcohol concentrations less than 0.01 gram shall be reported as "no alcohol detected".
- Blood alcohol evidence from the Pasadena Police Department will be preserved for reanalysis for six months. Evidence associated with other agencies will be returned to the proper agency upon completion of analysis.
Pasadena Police Department Regional Crime Laboratory
Standard Operating Procedures
Ethanol Quantitation Procedures

- If there is insufficient sample to determine the ethanol concentration (sample less than 1 ml), the report should indicate “Insufficient sample for analysis”.

- If the sample is unsuitable for analysis, such as improper seal, heavily coagulated sample etc., the report should indicate “Sample unsuitable for analysis”.

- If the analysis of a sample is serum (red top tube) instead of whole blood (grey top tube), a conversion factor must be applied to analysis results to reflect Texas Law. Serum and plasma ethanol concentration run 15 to 20% higher than whole blood. Accepted scientific literature supports a conversion factor of 1.15 to 1.20. By using a conversion factor of 1.2 (Garriott’s Medicolegal Aspects of Alcohol, 5th edition), maximum benefit is given to the suspect (i.e. serum ethanol concentration divided by 1.2 as opposed to 1.15 lowers the resulting whole blood ethanol concentration to include 95% of a population).

- Alcoholic beverage samples will be reported as "% alcohol by weight" or "% w/v". It may be necessary to report the alcohol concentration as "% alcohol by volume" or "% v/v".

 Conversion of alcohol concentration "by weight" to "by volume" can be accomplished with the following formula:

 \[\text{Alcohol} \% \text{ v/v} = \text{Alcohol} \% \text{ wt/v} \times 1.25 \]

 See Appendix 1 at the end of this section for definitions as listed in the Texas Alcoholic Beverage Code.

12. Reporting Other Volatile Substances

Volatile substances may be reported only if they are detected on both sample runs.

13. Case Review

Administrative and technical reviews are required for each case. This review is documented in the LIMS and is part of the case record.
Uncertainty of Measurement

Uncertainty of Measurement is a method for defining and quantifying the magnitude of the associated parameters that contribute to the inherent variance of the overall measurement process. Since all measurements have a potential for variability, determination of uncertainty as a process, attempts to allow users of such measurements to understand the reliability and suitability of the measured value. The Toxicology section will report the uncertainty of measurement in cases where there is a "measurement that matters". That is, where there is a reasonable expectation that a critical value or criteria may lie within the range of uncertainty for a specific measurement.

- Developing an Uncertainty Budget

The uncertainty budget for a measurement process will include both random (Type A) and systematic (Type B) uncertainties. Identified sources that can have an impact on the uncertainty measurement are:

Sample Preparation
- Homogeneity/Homogenization
- Extraction
- Derivatization
- Dilution
- Concentration

Controls
- Controls for quality assurance, e.g. reproducibility
- Uncertainty of calibrators, e.g. certified reference materials
- Uncertainty of internal standard
- Uncertainty of in-house controls
- Uncertainty of matrix of controls
- Uncertainty of reference standards

Calibration Curve
- Instrument precision, e.g. calibration Linearity

Data Processing
Averaging of results
- Rounding and truncating
- Statistics

Analysis
- Environmental effects

Pipette
- Uncertainty of pipette used for delivery

Determining the uncertainty of measurement budget
1. Calculate the standard uncertainty based on the type of distribution the data represents
2. Calculate the standard uncertainty subtotal: \((\sum u_i^2)\)
3. Calculate the Index: determine if the item contributes less than 1% of the standard uncertainty subtotal. Only items that contribute more than 1% will be included in calculating the total uncertainty.
4. Calculate the Combined Standard Uncertainty: \(U_c = \text{square root of } (\sum u_i^2)\)
5. Calculate the Expanded Combined Uncertainty using the desired coverage factor: a coverage factor of 2 will give a ~95% confidence interval and 3 will provide a ~99% confidence interval. The toxicology section will use the coverage factor of 2.

Blood-Alcohol uncertainty of measurement form

Definitions

1. **Uncertainty of Measurement** - is a parameter associated with the result of a measurement that characterizes the dispersion of values that could reasonably be attributed to the measurand

2. **Measurement that Matters** - A determined value that is used, or may reasonably be used, by an immediate or extended customer (anyone in the Judicial process) to determine, prosecute, or defend the type or level of criminal charge(s)

3. **Type A Evaluation** – method of evaluation of uncertainty based on any valid statistical method for treating data such as calculating the standard deviation of the mean of a series of independent observations
4. **Type B Evaluation** - a method of evaluation of uncertainty by means other than the statistical analysis of a series of observations

5. **Readability** - the smallest increment which the balance displays (i.e. 0.01g or 0.001g)

6. **Repeatability** - closeness of the agreement between the results of successive measurements of the same item carried out under the same conditions (example: a balance's ability to consistently deliver the same weight for a given mass)

7. **Linearity** – describes the difference between the observed and theoretical calibration values

8. **Standard Uncertainty** \((u_i) \) - a component of uncertainty, represented by an estimated standard deviation equal to the positive square root of the estimated variance

9. **Distribution:**
 a. Normal: A pattern of frequency of values arrayed around a central mean value, such that the pattern is consistent with a Gaussian distribution
 b. Rectangular: A distribution of values where there is equal probability that a value lies anywhere within the interval

10. **Combined Standard Uncertainty** \((u_c) \) - square root of the sum of the squares of the uncertainty factors, used to express the uncertainty of many measurement results

11. **Coverage Value** \((k) \) - the definition of the confidence interval; \((k = 2 \) allows for a \(\sim 95\% \) confidence interval, \(k = 3 \) allows for a \(\sim 99\% \) confidence interval)

12. **Expanded Uncertainty** \((U) \) - the interval in which a value \((y) \) can be confidently asserted to lie

13. **Index** - demonstrates the individual factor’s contribution to the event uncertainty

14. **Standard Deviation** - A value associated with a normal or Gaussian distribution describing an average departure from the mean value
BIOLOGICAL EVIDENCE COLLECTION, PRESERVATION, STORAGE, AND DISPOSAL

1. Blood Sample Collection, Preservation, and Storage

Collection
Samples will be collected pursuant to Texas Transportation Code, §724.011 or Texas Penal Code §22.011 or §22.021. Blood Sample Guidelines.

Preservation and Storage
- Blood samples submitted to the laboratory for blood alcohol analysis will be in a suitable container. Preference is given to grey top vacutainer tubes but other tubes, such as red top vacutainer tubes, may be used.
- All blood samples received will be documented with unique identifiers (laboratory number and analyst initials). The evidence will be secured and refrigerated until analysis is complete.

2. Securing Evidence

All other evidence shall be sealed with the analyst’s initials and date placed on the seal. The evidence will be transferred to Centralized Evidence Receiving to be filed upon completion of analysis.

3. Specimens other than Blood

All other specimens and samples will be obtained and secured in clean vials or containers, free from alcohol or drug contamination. Preservation with an antibacterial agent is not necessary. Due to the acidic pH of urine and the high alcohol concentration of some beverages (concentrations greater than about 20% v/v), bacteria will not survive. Mold, however, will grow in beer samples. It is recommended that all alcohol analysis of beverages be performed within 24 hours of receipt to insure that alcohol neoformation by bacteria is not a factor.

4. Final disposition after analysis

When the biological evidence is no longer required for criminal prosecution, it should be destroyed following Universal Bloodborne Pathogen Precautions.
QUALITY ASSURANCE OF EQUIPMENT

1. Purpose
To establish quality assurance guidelines for the maintenance, calibration, and repair of analytical instrumentation, balances, and pipettes.

2. Maintenance and Calibration of Laboratory Instrumentation

General Requirements for Analytical Instrumentation
All instruments will be periodically maintained and properly calibrated in accordance with the manufacturer’s recommendations and specifications and/or laboratory policy. All instruments will be checked after being moved or if a major repair is performed.

Gas Chromatography
- Calibration
Gas Chromatographs must be calibrated during each analysis session with the exception that if the instrument is shut down between sampling batches, when reanalysis of a previously tested specimen is required, or a priority sample is submitted and the same analyst will perform the analysis, recalibration is not necessary if standards or controls analyzed prior to sample analysis demonstrate linearity of the method and initial calibration was performed no more than a week prior. The use of additional controls or standards and/or frequency of recalibration may be determined by the laboratory.

The calibration and control standard charts or results will be maintained in a logbook, file, or electronically retrievable form. Calibration criteria specific to the instrument and calibration technique shall be established.

- Linearity Plots for Detectors
The linearity of each detector used must be proven across a wide range of ethanol concentrations. Standards for linearity confirmation must include the following four ethanol standards: 0.05, 0.10, 0.20, and 0.40.

The results of the linearity confirmation will be graphed as alcohol concentration versus detector response or area response ratio. The resulting graph should indicate a linear response across the range of standards tested. If the correlation coefficient (R) is less than 0.995, the issue should be investigated and the instrument should be recalibrated as necessary.
Gas Chromatograph Maintenance

Perform regular and preventative maintenance according to the manufacturer's recommendations or as necessary. A logbook of all maintenance will be kept with the instrument.

Gas Chromatography/Mass Spectrometry (GC/MS)
Performance Verification Check

- The Mass Selective Detector (MSD) should be tuned monthly before use or more often as needed (such as when carrier gas is changed or mass assignment fails a quality check).
- The instrument should be tuned according to the manufacturer's instructions and must meet the manufacturer's specification. If the manufacturer's specifications are not met, the instrument will be removed from service until it is repaired.
- A cocaine standard should be run monthly and the scan results entered in the logbook and maintained with the tune report for that month. If the m/z ratios of 303, 182, and 82 vary by one or more, the instrument will be re-tuned and the standard re-run. If the re-tuning does not correct the discrepancy, the instrument will be removed from service until it is repaired.
- Maintain a logbook with the results.

Other GC/MS Maintenance

- Run a solvent blank before each sample run. A copy of the blank run should be maintained with the case file.
- Perform regular and preventive maintenance according to the manufacturer's recommendations. A logbook documenting all non-routine maintenance (e.g. column replacement, filament replacement, seal replacement, vacuum oil changes, source cleaning, and major repairs) will be kept with the instrument.

Mechanical Pipette Performance Verification Check

Pipettes must be tested for accuracy and precision once a year. Calibration may be performed by an approved outside source or may be accomplished by personnel within the laboratory according to the laboratory's specification.

A record of the performance verification check, calibration, and any adjustment(s) will be maintained.
REFERENCES

Personal communication with Anheuser Busch, Inc., 1999.
APPENDIX 1
TEXAS ALCOHOLIC BEVERAGE CODE DEFINITIONS

Alcoholic Beverage
Alcohol, or any beverage containing more than one-half of one percent of alcohol by volume, which is capable of use for beverage purposes, either alone or when diluted.

Ale or Malt Liquor
A malt beverage containing more than four percent of alcohol by weight.

Beer
A malt beverage containing one-half of one percent or more of alcohol by volume and not more than four percent of alcohol by weight, and does not include a beverage designated by label or otherwise by a name other than beer.

Distilled Spirits
Alcohol, spirits of wine, whiskey, rum, brandy, gin, or any liquor produced in whole or in part by the process of distillation, including all dilutions or mixtures of them, and includes spirit coolers that may have an alcoholic content as low as four percent alcohol by volume and that contain plain, sparkling, or carbonated water and may also contain one or more natural or artificial blending or flavoring ingredients.

Liquor
Any alcoholic beverage containing alcohol in excess of four percent by weight, unless otherwise indicated. Proof that an alcoholic beverage is alcohol, spirits of wine, whiskey, liquor, wine, brandy, gin, rum, ale, malt liquor, tequila, mescal, habanero, or barreteago, is prima facie evidence that it is liquor.

Mixed Beverage
One or more servings of a beverage composed in whole or part of an alcoholic beverage in a sealed or unsealed container of any legal size for consumption on the premises where served or sold by the holder of a mixed beverage permit, the holder of a daily temporary mixed beverage permit, the holder of a caterer's permit, the holder of a mixed beverage late hours permit, the holder of a private club registration permit, or the holder of a private club late hours permit.

Wine and Vinous Liquor
The product obtained from the alcoholic fermentation of juice of sound ripe grapes, fruits, berries, or honey, and includes wine coolers.

Wine Cooler
An alcoholic beverage consisting of vinous liquor plus plain, sparkling, or carbonated water and which may also contain one or more natural or artificial blending or flavoring ingredients. A wine cooler may have an alcohol content as low as one-half of one percent by volume.
QUALITY ASSURANCE

Purpose
The laboratory is responsible for assuring the integrity of the data, results, and interpretations resulting from the analyses performed. A quality assurance program includes quality control, training, continuing education, proficiency testing, and quality assessment (technical review and audits.)

QUALITY CONTROL
Quality control addresses the use of standards, controls and calibrations.

Chemical Standards and Reagents
Pure chemical standards should be obtained for parent drugs and metabolites. Each will be documented with the date received into the laboratory. Each will be verified and stored appropriately to preserve its integrity. Compare all standard chromatographic and spectral data against any references to ensure accuracy of the standard obtained. Out-dated standards shall be destroyed if they are expired or retained for training purposes only.

- All prepared stock and working solutions will be labeled, dated, and initialed by the preparer.
- Reagents should be checked periodically with a known standard to ensure integrity.
- Each batch of immunoassay control panels will be checked with positive and negative controls before use.
- Acids, bases, and buffers are pH checked at the time of preparation.

No reagent or other chemical preparation will be used in casework if it is not working properly or if it is contaminated. If an analyst has reason to suspect that a reagent or other chemical preparation is not working properly or is contaminated, he or she must:

- Check the reagent or system with standards or proper sample controls.
- Discard the reagent if it fails the quality check, prepare a new reagent, and quality check the reagent with a known standard.
- Cease performing casework with these reagents until the problem has been corrected.
- Identify casework that may have been affected by the reagents/chemicals that failed the quality check and re-test with quality checked reagents.
- Inform the Quality Manager if the problem persists.
Instruments and Calibrations

Instruments will be maintained periodically. Quantitative instruments should be calibrated when a batch of samples will be analyzed. Document all preventive maintenance performed, by whom and the dates in an instrument logbook. The actions taken for routine periodic instrument performance checks and calibrations should also be recorded in the instrument log.

For quality control information on the GC headspace analyzer, refer to the section on ethanol quantitation.

Gas Chromatography/Mass Spectrometry (GC/MS) plus TSD Detector

Performance Verification Check

- The Mass Selective Detector (MSD) should be tuned monthly before use or more often as needed (such as when mass assignment fails a quality check).

- The instrument should be tuned according to the manufacturer’s instructions and must meet the manufacturer’s specifications. If the manufacturer’s specifications are not met, the instrument will be removed from service until it can be repaired.

- A cocaine standard should be run monthly and the scan results entered in the logbook and maintained with the tune report for that month. If the m/z ratios of 303, 182, and 82 vary by one or more, the instrument will be re-tuned and the standard re-run. If the re-tuning does not correct the discrepancy, the instrument will be removed from service until it can be repaired.

- The retention time for the cocaine standard will be documented for the TSD detector.

- Maintain a logbook with the results.

Other GC/MS Maintenance

- Run a solvent blank before each sample run. A copy of the blank run should be maintained with the case file.

- Perform regular and preventive maintenance according to the manufacturer’s recommendations.

- A logbook documenting all non-routine maintenance (e.g. column replacement, filament replacement, seal replacement, vacuum oil changes, source cleaning, and major repairs) will be kept with the instrument.

Malfunction of an Instrument or Balance

- If an instrument or balance fails the performance check or a performance problem is detected during routine maintenance, it must be removed from service, the team leader or Quality Manager must be notified and the problem recorded in the logbook.
Pasadena Police Department Regional Crime Laboratory
Standard Operating Procedures
Toxicology

- No instrument or balance is to be used if it is not in proper working order.
- Repair or have the instrument or balance repaired and perform routine quality control procedures with standards to ensure it is working properly before it is returned to service.
- Verification with standards will be performed after routine maintenance if the performance of an instrument could be affected.
- Keep a record of all repairs and routine maintenance in an appropriate logbook.

Method Development and Validation

A new method may be incorporated if it has greater sensitivity, it is more efficient and/or economical and it produces cleaner results. New methodology will be incorporated into the toxicology protocol when it has been established that the method is accepted in the forensic scientific community. Acceptance of the method is understood when the method is obtained from a peer-reviewed publication or received from other scientists in the same discipline.

The method must be tested with known controls before using on unknown samples from casework. It shall be subjected to a thorough evaluation to assure its validity. The new method’s accuracy and precision must be proven to be equal or greater than the existing method, before the new method can be implemented. The method must be reproducible, as demonstrated by multiple analyses. The new procedure will be evaluated on its shortcomings and strengths. After thorough testing, the method will be judged by the analyst and the Quality Assurance Manager before replacement of the existing method.

Methods utilized by the laboratory are based on the following:

- Acceptance within the forensic science community
- Reproducible accurate results
- Validated methods
- Available laboratory equipment, supplies and reagents

TRAINING

Training can be formal coursework taught by an outside agency or informal classes taught by other analysts. Examples of training include:

- Courses in theory, analytical techniques and practical application
- In-house training in procedures and protocols
- Reading of reference materials
CONTINUING EDUCATION
Continuing education is provided through the following examples:
- In-house training
- Keeping abreast with scientific developments
- Reading scientific literature
- Discussions with colleagues
- Attendance at professional conferences
- Workshops provided by professional groups
- Workshops in analytical techniques, interpretations, and practical applications
- College or university courses

PROFICIENCY TESTING
Assurance of accurate and precise conclusions can be accomplished by participating in internal and external open and blind proficiency examinations. A proficiency test will be completed each year by any analyst performing casework analysis.

External open blind proficiency program
A proficiency service is presently being subscribed for the following areas:
- Toxicology
 - CAP (College of American Pathologists) Forensic Sciences
 - Quality Forensics
- Blood Alcohol
 - Collaborative Testing Services Inc., P.O. Box 650820, 21331 Gentry Drive, Sterling, VA 20165
 - United States Department of Transportation, Research and Special Programs, Administration, Safety and Environmental Technology Division, Kendall Square, Cambridge, Massachusetts 02142

Internal open proficiency program
A urine specimen may be submitted from an individual who is using prescribed medication. The time of collection, time of the last dose of medication, and the list of
substances ingested are documented. Analysis will proceed as for casework on unknowns.

Other proficiency samples, such as past proficiency samples and previous casework that has been adjudicated, may also be used as internal open blind proficiencies.

QUALITY ASSESSMENT

Quality assessment monitors the validity of methods and specific results through technical review, audit, etc. A quality assessment program provides the documentation for management to demonstrate competence and to address complaints.

Technical Review

All case notes and reports will be reviewed by a qualified analyst. The technical review shall monitor analysis methods, calculations, and scientific conclusions on the worksheet and proper reporting on the supplementary report. Laboratory numbers and the chemist's initials must be on every page of the examination sheets and spectra.

Analysis of all unknowns must be performed with the proper controls and calibrators. The review must determine that the minimum appropriate analyses have been performed to accept the scientific conclusion. The chromatographic or spectral analysis should conform to a standard in retention time, conformity, proportion, and peak intensities. There shall be sufficient resolution in the chromatograph analysis to compare to a control.

Toxicology samples shall have a minimum of two identifying tests. Each positive result should be confirmed with a separate aliquot from the original or a second sample by a different analytical technique. Exceptions may be made when the analytical technique is simple and specific (i.e. alcohol analysis and quantitation by gas chromatography) or when a different analytical technique is not available.

Audits

An audit is an evaluation process to determine the degree of adherence to prescribed norms (criteria, standards) resulting in an opinion or judgment. Audits on random case folders and evidence should be conducted periodically. The audit should evaluate case folders and evidence storage, the accessibility of both, and documentation of chain of custody identifying evidence location.

The audit should examine each case folder and evidence for complete labeling of every page in the folder and the evidence (i.e. laboratory number and initials). In addition, the audit will look at documentation of chain of custody, the completeness of the folder (whether pages, such as graphs, worksheets, or supplements, etc., are missing), and the presence of a technical review.
PPDLAB Toxicology Section Quality Check Procedures

Urine Drug quality checks to be run with all batched urine specimens analyzed:

All reagents and consumables that would be used in a PPDLAB urine drug analysis are utilized with a positive and negative control run with casework samples. The control urine is obtained from BioRad in the following levels:

BioRad Liquichek Urine Toxicology – Negative Control

BioRad Liquichek Urine Toxicology – Level C4

The BioRad Negative Control will comprise the negative control while BioRad Level C4 will comprise the positive control. The major analytes in the BioRad Controls are as follows:

<table>
<thead>
<tr>
<th>MDA</th>
<th>MDMA</th>
<th>MDEA</th>
</tr>
</thead>
<tbody>
<tr>
<td>d-Amphetamine</td>
<td>d-Methamphetamine</td>
<td>Amobarbital</td>
</tr>
<tr>
<td>Butalbital</td>
<td>Pentobarbital</td>
<td>Phenobarbital</td>
</tr>
<tr>
<td>Secobarbital</td>
<td>ñ-hydroxyalprazolam</td>
<td>Nordiazepam</td>
</tr>
<tr>
<td>Benzoylcegonine</td>
<td>11-Nor-ñ-9-THC-9-COOH</td>
<td>Norpropoxyphene</td>
</tr>
<tr>
<td>Methadone</td>
<td>Methaqualone</td>
<td>Codeine</td>
</tr>
<tr>
<td>Propoxyphene</td>
<td>Morphine-3-ñ-D-glucuronide</td>
<td></td>
</tr>
</tbody>
</table>

Additional levels are available from BioRad which may be utilized in the QC assay; however, these two levels have proven ideal in establishing limits of detection and instrument response.

Consumables used include solid phase extraction cartridges, toxi grams a and b, InstantView immunoassay kit, Triage immunoassay kit, test tubes, vial inserts, amber vials, concentration cups, disposable beakers and pipettes. Reagents include deionized water, toxi tubes a and b, phosphate buffers, acetic acid, methanol, ethyl acetate, methylene chloride, ammonium hydroxide, hexane, ß-glucoronidase, sodium hydroxide, isopropanol, and derivatization reagent (MSTFA AND BSTFA). Before new consumables and reagents are introduced into casework samples; item description, lot numbers, and expiration dates should be documented.

Basic extraction scheme follows PPDLAB Toxicology section protocols for urine drug analysis. Solid phase extraction is used for confirmation via GC/MS analysis. Additionally, toxilab extraction or equivalent is used primarily as a secondary ID but can be used as a confirmation extraction while the immunoassay serves as the initial
screen. Additionally, the TSD detector may be utilized as a secondary testing mechanism.

Analysis of the negative urine control should yield no drugs present on both immunoassay kits. Toxilab or equivalent screening should also reveal a negative response. Additionally, any extraction procedure and its related instrumental analysis method should yield a negative response. Analysis of the positive urine control should identify all the previously mentioned analytes on the general extraction schemes or specialized extraction schemes (i.e. thc, benzodiazepines, etc.) and its related instrumental analysis method. Immunoassays of the Level C4 control should yield a positive response on all drug classes. Most but not all analytes should indicate a positive response on Toxilab or equivalent. Additionally, the TSD detector on the Varian 4000 may be utilized as a secondary testing mechanism on urine specimens; therefore, the response of the TSD detector will be evaluated on all control samples.

All results will be documented and maintained in the Laboratory (either case folder or QA binder).

Blood Drug quality check to be run with all blood casework samples:

All reagents and consumables that would be used in a PPDLAB blood drug analysis are utilized in a quality control assays. Control Blood is obtained from Cliniqa Corporation or made in-house.

The analytes in the positive control stock solution are deuterated and may include but are not limited to the following drugs:

- 1-(3-chlorophenyl)piperazine D8 - 100 μg/mL
- 11 nor d9 carboxy THC D9 - 100 μg/mL
- 7-aminoacetazepam D4 - 100 μg/mL -
- Amphetamine D5 - 100 μg/mL
- Benzoylcegonine D3 - 100 μg/mL
- Butalbital D5 - 100 μg/mL
- Carisoprodol D7 - 100 μg/mL
- Dextropropoxyphene D5 - 100 μg/mL
- Ecgonine methyl ester D3 - 100 μg/mL
- Fluoxetine D6 - 100 μg/mL
- Hydrocodone D3 - 100 μg/mL
- Lorazepam D4 - 100 μg/mL
- MDA D5 - 100 μg/mL
The negative blood utilized will be the Cliniqa Corporation Whole Blood Ethanol or the Whole Blood Volatile Control. These controls are used for the Lab's blood alcohol verification methods and contain only volatile components.

Consumables used include solid phase extraction cartridges, test tubes, vial inserts, amber vials, concentration cups, disposable beakers and pipettes. Reagents include deionized water, phosphate buffers, acetic acid, methanol, ethyl acetate, methylene chloride, ammonium hydroxide, hexane, sodium hydroxide, isopropanol, and derivatization reagent (MSTFA or BSTFA). Before new consumables and reagents are introduced into casework samples; item description, lot numbers, expiration dates and dates introduced into analysis should be documented. For MSTFA derivatizing reagent, the expiration date will be three years from the date of purchase. For in-house controls, the expiration date will be three years from the date of preparation.

Basic extraction scheme follows PPDLAB Toxicology section protocols for blood drug analysis. A negative and positive control will be run with all batched blood casework samples. It is expected that following section protocols, all analytes in the positive control should be detected on GC/MS confirmation. Analysis of the negative control should yield no drugs present on any extraction procedure and its related instrumental method. Additionally, the TSD detector on the Varian 4000 may be utilized as a screening mechanism on blood samples; therefore, the response of the TSD detector will be evaluated on all control samples.

All results will be documented and maintained in a QA binder. All lot numbers and expiration dates of controls, consumables and reagents will also be documented in this binder.

Blood Alcohol quality check to be run semi-annually:

All reagents and consumables that would be used in a PPDLAB blood alcohol analysis are utilized in quality control assays. The whole blood ethanol control and whole blood
volatile control are obtained from Cliniqa Corporation. Aqueous ethanol standards will be NIST traceable or actual NIST ethanol standards.

Additionally, ethanol and n-propanol stocks will be reformulated semi-annually. After 24 hour equilibration, n-propanol and varying ethanol working solutions will be made. Also, the PPDLAB volatile standard will be reformulated semi-annually.

The solutions to be reformulated include:

- n-propanol stock solution
- 0.100 g/dl n-propanol (working solution)
- 0.040 g/dl EtOH solution
- 0.080 g/dl EtOH solution
- 0.160 g/dl EtOH solution
- 0.250 g/dl EtOH solution
- 0.400 g/dl EtOH solution
- PPDLAB Volatile Mix 1 (EtOH, acetone, acetaldehyde, MeOH, and IsoP)

Consumables used include headspace vials, crimp caps, disposable beakers and pipettes. Reagents include deionized water, sodium chloride, ammonium sulfate, ethanol, n-propanol, methanol, isopropanol, acetone, acetaldehyde, chloroform, toluene, and formaldehyde.

Basic analytical scheme follows PPDLAB Toxicology section protocols for blood alcohol analysis. Each new lot of consumables and reagents received by the Lab are included in the semi-annual check to ensure utmost confidence in analysis procedures.

Additionally, each time a new control lot of whole blood ethanol or whole blood volatile is received, a GC quantitation run consisting of at least 15 samples will be performed. This run will establish a mean value for each of the controls.

Before new consumables and reagents are introduced into casework samples; item description, lot numbers, and expiration dates should be documented.
ABBREVIATIONS AND DEFINITIONS

SCOPE
To provide a list of useful abbreviations and definitions

ABBREVIATIONS

+/−...plus or minus
AB .. analytical balance
AEME ... anhydrous ecgonine methyl ester
AM ... used for some synthetic cannabinoids
amph or amp .. amphetamine
APAP ... acetaminophen
? ... indication
1,4-BD ... 1,4-butanediol
BAR ... barbiturate
BB ... bulk balance
BE .. benzoylecgonine
BH .. biohazard
BSTFA ... derivatizing agent (TMS derivatives)
BZD ... benzodiazepine
BZO ... benzodiazepines
BZP .. benzylpiperazine
c or c/ .. containing
cig .. cigarette
cig stub .. cigarette stub
coc .. cocaine
COC .. drug screening strip = cocaine metabolite i.e. BE
CP ... synthetic cannabinoids (Charles Pfizer)
Pasadena Police Department Regional Crime Laboratory
Standard Operating Procedures
Toxicology

CS.. controlled substance
DD.. dangerous drug
D.O.. destroy
DHC .. dihydrocodeine
EA .. ethyl acetate
EDDP .. methadone metabolite
EDIA ... Evidence Destroyed in Analysis
EME .. ecgonine methyl ester
ENV ... envelope
EtAc... ethyl acetate
EtOH .. ethanolo
EV .. evidence
g ... grams
GBL ... γ-butyrolactone
GC ... gas chromatograph
GHB ... γ-hydroxybutyric acid (γ-hydroxybutyrate)
HC ... hydrocodone
HM ... hydromorphone
HSB ... heat sealed bag
HU ... synthetic cannabinoids (Hebrew University)
Ind ... indication
JWH ... synthetic cannabinoids after James W. Hoffman
kg ... kilograms
lb ... pounds
L ... liters
LSD ... lysergic acid diethylamide
Mari ... marihuana
mCPP .. meta-chlorophenylpiperazine
MDA ... 3,4-methylenedioxy amphetamine
MDE ... 3,4-methylenedioxy ethylamphetamine
MDMA .. 3,4-methylenedioxy methamphetamine
MDPV ... methylenedioxypyrovalerone
MeCl .. methylene chloride
MeOH .. methanol
metb or mtb .. metabolite
meth or MET ... methamphetamine
mg ... milligrams
MS ... mass spectrometer
MSTFA .. derivatizing agent (TMS derivatives)
MTD .. methadone metabolite i.e. EDDP
neg ... negative
nor-HC or NHC ... norhydrocodone
OPI ... opiates
oz ... ounces
PCP .. phencyclidine
pkg .. package
pos ... positive
PS .. plant substance
Rf ... retention factor (TLC)
RT ... retention time
TFMPP ... trifluoromethylphenylpiperazine
THC .. tetrahydrocannabinol
THCA .. carboxy-THC
TLC ... thin layer chromatography
DEFINITIONS

- **Alkaloid** - Group of basic, nitrogenous plant products which have marked physiological action. The majority of these are complex heterocyclic compounds.

- **Addiction** - Drug addiction is a state of periodic or chronic intoxication produced by the repeated consumption of a drug. Its characteristics include:
 - An overpowering desire or need (compulsion) to continue taking the drug and to obtain it by any means;
 - A tendency to increase the dose;
 - A psychic (psychological) and generally a physical dependence on the effects of the drug;
 - An effect detrimental to the individual and to society.

- **Adulterant** - Compounds which are added either to attempt to increase or enhance the effect of a controlled substance on the body, or to fool the pusher and/or addicts into thinking they have better “stuff” than they have actually purchased.

- **Analgesic** - Insensibility to pain without loss of consciousness; pain killer.

- **Anesthetic** - Causes loss of sensation with or without loss of consciousness.

- **Anorectic** - Causes loss of appetite.

- **By-Products** - Compounds found in addition to the compound of interest after a chemical reaction or an extraction.

- **Central Nervous System** - The brain and spinal cord.

- **Controlled Substance** - A substance, including a drug and an immediate precursor, listed in Schedules I through V or Penalty Groups 1 through 4.
Criminalistics - That science which involves the application of the physical sciences (e.g., chemistry, physics, biology) to the investigation of crime.

Dangerous Drug - A device or a drug that is unsafe for self-medication and that is not included in Schedules I through V or Penalty Groups 1 through 4 of Chapter 481 in the Texas Controlled Substances Act. The term includes a device or a drug that bears or is required to bear the legend:

A. Caution: federal law prohibits dispensing without prescription; or

B. Caution: federal law restricts this drug by or on the order of a licensed veterinarian.

Dependence - Drug dependence is a state of psychological or physical dependence or both, which results from chronic, periodic, or continuous use of a drug.

Depressant - Any of several drugs which sedate by acting on the central nervous system. Medical uses include the treatment of anxiety, tension, and high blood pressure.

Diluent (Dilutants) - Diluents are compounds added strictly for "bulk" to increase the quantity of a controlled substance for distribution.

Drug - A substance, other than a device or a component, part, or accessory of a device, that is:

- recognized as a drug in the official United States Pharmacopoeia, official Homeopathic Pharmacopoeia of the United States, official National Formulary, or a supplement to either pharmacopoeia or the formulary;
- intended for use in the diagnosis, cure, mitigation, treatment, or prevention of disease in man or animals;
- intended to affect the structure or function of the body of man or animals but is not a food; or
- intended for use as a component of a substance described by Paragraph A, B, or C (from Texas Controlled Substances Act).

Felony - A grave crime declared to be a felony by the common law or by statute regardless of the punishment actually imposed.
Forensic Science - Forensic science is a broad term denoting the application of medical, social, behavioral, and other sciences to the administration of justice.

Habituation - A condition, resulting from the repeated administration of a drug, which includes these characteristics:

- a desire (but not a compulsion) to continue taking the drug for the sense of improved well-being that it engenders;
- little or no tendency to increase the dose;
- some degree of psychic dependence on the effect of the drug but absence of physical dependence and, hence, no abstinence syndrome;
- a detrimental effect, if any, primarily on the individual.

Simplified, habituation is the psychological desire to repeat the use of a drug intermittently or continuously because of emotional reasons.

Hallucinogen - Both natural and synthetic hallucinogens are substances that distort the perception of objective reality. They induce a state of excitation of the central nervous system. A person using hallucinogens will be disoriented, have delusions, and hallucinations.

Hypnotic - An agent that induces sleep.

Impeach - To discredit a witness.

Local Anesthetic - Causes a numbing effect.

Marihuana - The plant *Cannabis sativa* L., whether growing or not, the seeds of that plant, and every compound, manufacture, salt, derivative, mixture, or preparation of that plant or its seeds. The term does not include:

- the resin extracted from a part of the plant or compound, manufacture, salt, derivative, mixture, or preparation of the resin;
- the mature stalks of the plant or fiber produced from the stalks;
- oil or cake made from the seeds of the plant;
- a compound, manufacture, salt, derivative, mixture, or preparation of the
mature stalks, fiber, oil, or cake; or

- the sterilized seeds of the plant that are incapable of germination.

- **Misdemeanor** - A crime less serious than a felony. For possession less than 28 grams, substances in Penalty Groups 3 and 4. For possession marihuana, less than 4 ounces. For possession without a prescription, all dangerous drugs.

- **Narcotic** - Something that soothes, relieves or lulls; drug that in moderate doses dulls the senses, relieves pain, and induces profound sleep but in excessive doses causes stupor, coma, or convulsions (dictionary definition). This term in its medical meaning refers to opium and opium derivatives or synthetic substitutes. They are the most effective agents for the relief of pain and are central nervous system (CNS) depressants.

- **Narcotic Drug** - Means any of the following, produced directly or indirectly by extraction from substances of vegetable origin, independently by means of chemical synthesis, or by a combination of extraction and chemical synthesis:
 1. opium and opiates, and a salt, compound, derivative, or preparation of opium or opiates;
 2. a salt, compound, isomer, derivative, or preparation of a salt, compound, isomer, or derivative that is chemically equivalent or identical to a substance listed in the first bullet other than the isoquinoline alkaloids of opium;
 3. opium poppy and poppy straw; or
 4. cocaine, including:
 a. its salts, its optical, position, or geometric isomers, and the salts of those isomers;
 b. coca leaves and a salt, compound, derivative, or preparation of coca leaves; and
 c. a salt, compound, derivative, or preparation of a salt, compound, or derivative that is chemically equivalent or identical to a substance described by bullets one or two, other than decocanized coca leaves or extractions of coca leaves that do not contain cocaine or eegonine (from Texas Controlled Substances Act).

- **Opiate** - A substance that has an addiction-forming or addiction-sustaining liability similar to morphine or is capable of conversion into a drug having addiction-forming or addiction-sustaining liability. The term includes its racemic and levorotatory forms. The term does not include, unless specifically designated as controlled under Section 481.038, the dextrorotatory isomer of dextromethorphan (from Texas Controlled Substances Act).
Controlled Substances Act).

- **Over ruled** - When an objection is over ruled you can answer the question.

- **Perjury** - Act of willfully swearing or testifying falsely.

- **Physical Dependence** - An adaptive state caused by repeated drug use that reveals itself by development of intense physical symptoms (withdrawal syndrome) when use of the drug is stopped.

- **Potentiation** - Occurs when the combined action of two or more drugs is greater than the sum of the effects of each drug taken alone. Potentiation can be very useful in certain medical procedures. For example, physicians can induce and maintain a specific degree of anesthesia by using another drug to potentiate the primary anesthetic agent. Potentiation may also be dangerous. For example, barbiturates and many tranquilizers potentiate the depressant effects of alcohol.

- **Psychological Dependence** - An attachment to drug use which arises from a drug's ability to satisfy some emotional or personality need of an individual. This attachment does not require a physical dependence, although physical dependence may seem to reinforce psychological dependence.

- **Sedative** - An agent that quiets or calms activity.

- **Stimulant** - Any of several drugs which act on the central nervous system producing excitation, alertness and wakefulness. Medical uses include the treatment of mild depressive states, overweight and narcolepsy, a disease characterized by an almost overwhelming desire to sleep.

- **Sustained** - When an objection is sustained, you cannot answer the question.

- **Tolerance** - With many drugs, a person must keep increasing the dosage to maintain the same effect.

- **Voir Dire** - Preliminary examination of witness (e.g., criminalist) in order to determine qualifications and competency, or to examine in depth the chain of custody of the evidence.
SIMPLIFIED COURT DEFINITIONS

These are some suggested short definitions that could be useful when testifying about certain testing procedures.

- **SPOT TESTS**
 Series of screening tests which indicate what type of compounds might be present.

- **MICROCRYSTALLINE TEST**
 An unknown sample is dissolved in a reagent and viewed under the microscope for the formation of characteristic crystals.

- **THIN LAYER CHROMATOGRAPHY**
 Comparison of adsorption rates of a known and an unknown sample in a solvent system on a silica gel surface.

- **GAS CHROMATOGRAPH**
 An instrument which identifies the components of a mixture based upon their retention times on a separating column.

- **GAS CHROMATOGRAPH QUANTITATION**
 A quantitation based on the comparison of the areas under the peaks for an unknown sample and a standard.

- **ULTRAVIOLET SPECTROPHOTOMETER**
 An instrument which identifies a sample based on its light absorption pattern. Ultraviolet light at different wavelengths passes through the sample and a graph is produced showing where the light is absorbed. Starting with a known sample weight and a known solvent volume, the percentage of purity can be determined.

- **GAS CHROMATOGRAPH/MASS SPECTROMETER**
 An instrument which separates and specifically identifies the components of a mixture based upon their masses.

- **FOURIER TRANSFORM INFRARED SPECTROPHOTOMETRY**
 An instrumental technique which identifies substances based upon their unique infrared light absorption patterns.
ADULTERANTS
Adulterants are compounds which are added either to attempt to increase or enhance the effect of a controlled substance on the body, or to fool the pusher and/or addicts into thinking they have better "stuff" than they do.

DILUENTS (DILUTANTS)
Diluents are compounds added strictly for "bulk" to increase the quantity of a controlled substance for distribution. The lawyers all use the word “dilutants.”

BY-PRODUCTS
Compounds found in addition to the compound of interest after a chemical reaction or an extraction.

INSTRUMENT
A device that uses scientific principles to make accurate, precise, and repeatable measurements.

MACHINE
A device that converts energy into motion or motion into energy.
TRAINING GUIDE CONTENTS

Toxicology Section Training Outline...2
Toxicology Orientation...4
General Guidelines ...5
Toxicology Section Objective..7
Toxicology Checklist ...8
Blood Alcohol Study Questions..10
TOXICOLOGY SECTION TRAINING OUTLINE

PURPOSE

The outline provides a survey of the training program and the expectations of the trainee during the training period. An approximate period of time is provided for each category of training. Time allotted per training period may vary.

ORIENTATION (one week)

The trainee will be given a short period for familiarization of the overall functioning of the laboratory.

GENERAL INFORMATION (two to four weeks)

The trainee will be expected to complete the reading assignments and receive general instruction in the day to day activities of the Toxicology section.

- Reading material
- Introduction to Toxicology
- Introduction to Centralized Evidence Receiving
- Case and Evidence Documentation
- Instrumentation
- Non-instrumental techniques
- Introduction to court procedures and legal aspects
- Projects

TOXICOLOGY ANALYSIS TRAINING (one to six months)

The trainee will be given analysis training in the various areas of the toxicology section listed:

- Biological Fluids (urine, blood and stomach contents)
- Tablets and capsules
- Powders
- Liquids
- Miscellaneous materials
- Quality control and assurance
- Examination documentation and report writing
APPLICATIONS OF TOXICOLOGY ANALYSIS TECHNIQUES (one to six months)

Training in analysis of toxicology samples will progress from standard samples to previously analyzed samples followed by competency testing with proficiency samples. Samples used in training include:

- Known samples using older proficiency urine specimens.
- Known blood alcohol samples prepared internally.
- Previously analyzed samples of casework with direct supervision.
- Competency testing for blood alcohol and urine drugs.

COURT TESTIMONY

- Training - Observation of other analysts and discussion
- Mock Trial – testimony given in a courtroom with videotaping of testimony, when available, and follow-up critique

BREATH ALCOHOL TECHNICAL SUPERVISOR TRAINING

If the trainee’s duties are to include work as a Technical Supervisor, follow the regulations established by the Office of the Scientific Director with the Texas Department of Public Safety.

EXAMINATIONS

Oral, written and practical laboratory examinations will be given periodically until training is completed. Examinations may also be given unannounced. Discussions and evaluation of the examinations will provide an assessment of the employee’s progress during training.

OUTSIDE TRAINING

The trainee will be provided an opportunity to attend available outside instruction through other agencies.
TOXICOLOGY SECTION TRAINING GUIDE

ORIENTATION

1. The laboratory will ensure that the new employee has received the various items:
 - Identification Badge
 - Safety equipment, work items, work area assignment, lab coats etc.
 - Training Verification Book (employee will keep all certificates for training and a copy of their resume)

2. The new employee will become familiar with the operations and responsibilities of the various sections within the laboratory. The individual may visit the various sections to talk to the personnel and get acquainted with the various types of analysis, evidence, reports, files etc.

3. The individual will be provided with and will read and understand the following:
 - Laboratory Operations Guide
 - The Laboratory Safety Manual
 - Any information provided by Human Resources

4. The employee will become familiar with the Operational Guide and Analytical Procedures for the toxicology section.

5. The employee will attend any scheduled City and Police Department Orientation Classes or functions for new employees.
GENERAL GUIDELINES

PURPOSE

The General Guidelines provide an overview of the function of the Toxicology section from analysis of body fluids, supervision of the breath alcohol testing program and court testimony. The training schedule outlines the required reading and practical applications for a six-month program.

TRAINING PROGRAM

All trainees receive intensive training which includes:

- Laboratory Operations Guide
- Laboratory Safety Manual
- Security and handling of evidence
- Operation and maintenance of instrumentation and equipment
- All necessary paperwork
- Analysis of Evidence
- Court Testimony
- Breath Alcohol Technical Supervisor training

TOXICOLOGICAL EVIDENCE

Toxicological analysis will be performed on various types of evidence received in the laboratory. Examples include but are not limited to the following materials:

- Urine
- Blood
- Stomach contents
- Tablets and capsules
- Powders
- Liquids
- Miscellaneous (Food items, etc.)
TYPES OF EXAMINATIONS

Analysis of toxicological evidence received in the laboratory will use any or all of the following analytical techniques:

a. Screening Tests
 i. Toxi-Lab Chromatography
 ii. Immunoassay
 iii. Thin Layer Chromatography
 iv. Ultraviolet Spectroscopy
 v. Chemical Spot Tests

b. Confirmatory Tests
 i. Gas Chromatography Mass Spectrometry (GCMS)
 ii. Gas Chromatography (for ethanol quantitation)
 iii. Fourier Transform Infrared Spectroscopy (FTIR)

PROFICIENCY TESTING

Toxicology specimens will be commercially purchased to determine the proficiency of the analyst in toxicological analysis. Blood specimens are received for blood alcohol proficiency testing and urine specimens are received for urine drug proficiency testing.

Additional proficiencies may be prepared internally as needed.
TOXICOLOGY OBJECTIVES

Perform analysis of blood and urine specimens with a short turnaround time.

- All priority requests from an Assistant District Attorney or officer should be analyzed before the agreed deadline.
- Prioritize blood alcohol and other alcohol before other cases.
- Analysis schedule will depend on caseload in the section and available personnel.
 - Blood alcohols should be analyzed within one (1) week of receipt.
 - Blood drugs should be analyzed within one month.
 - Urine drugs should be analyzed within one month.
 - All other evidence should be worked within 2 months.
- Submit all evidence within one week after analysis is complete.
- File reports within one week of completion of analysis.

Provide training for the department and other agencies as needed.
Name__________________________________

The employee will date and initial the following:

I have read the Laboratory Safety Manual ____________________________

I have read the Forensic Science Quality Manual ____________________________

I have read the Toxicology Section Operational Guide ____________________________

I have read the recommended reading materials ____________________________

Blood Alcohol Training Checklist

<table>
<thead>
<tr>
<th>Subject</th>
<th>Trainer's Initials</th>
<th>Date Training Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Required Reading</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a). Toxicology Procedures Manual</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Required Outside Training</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a). The Robert K. Borkenstein Course on Alcohol and Highway Safety: Testing, Research and Litigation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Understand the theory and application of headspace gas chromatography (GC/HS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Comprehend the function and the specifics of operation of the GC/HS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Prepare specimens for analysis by GC/HS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Operate GC/HS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Calibrate the instrument and quantitate ethanol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Interpret results by thoroughly examining and explaining the chromatographs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Understand the use of internal and external standards</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Process and record results</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Toxicology

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11. Understand the uncertainty of measurement (calculation and court explanation)</td>
<td></td>
</tr>
<tr>
<td>12. Understand and demonstrate proficiency in retrograde extrapolation (calculation and court explanation)</td>
<td></td>
</tr>
<tr>
<td>13. Understand the fate of ethanol (EtOH) taken into the body</td>
<td></td>
</tr>
<tr>
<td>14. Understand the signs of EtOH impairment (physical and physiology)</td>
<td></td>
</tr>
<tr>
<td>15 Perspectives in Expert Testimony (WVU Continuing Education)</td>
<td></td>
</tr>
</tbody>
</table>

Competency Testing: Demonstrate proficiency by analyzing of adjudicated samples

Written Examination

Mock Court Trial

Certification of the completion of training

___ Date__________________

Trainer’s Signature

___ Date__________________

Quality Manager Signature

___ Date__________________

Laboratory Director Signature

Approval Date: February 10, 2014 TOX-TG-01
Effective Date: February 17, 2014 Version 3
Approved by: Technical Leader Derek Sanders/Quality Manager Azell Carter Page 9 of 10

THIS DOCUMENT IS CONSIDERED UNCONTROLLED IF PRINTED OR NOT VIEWED ON THE PPDRL Intranet
Blood Alcohol Study Questions:

1. Explain the principle and operation of headspace gas chromatography?

2. Explain why calibration or recalibration of the headspace gas chromatograph is necessary?
 How is recalibration accomplished?

3. What is NIST?
 Why is it important?

4. Explain the difference between serum and blood ethanol?

5. What is the purpose of running a mixed volatile control and name components?

6. What are the properties of a good internal standard?

7. What is the uncertainty of measurement for the alcohol assay and what does it mean?
 How would you explain uncertainty of measurement in a courtroom?

8. Define intoxication according to Texas Law?

9. Define a standard drink?
 How much alcohol is in a standard drink?

10. What is the legal limit of intoxication in Texas for blood, breath, urine?

11. Explain the three fates of ethanol introduction into a person’s body?

12. What is the difference in the column used for blood ethanol analysis?

13. Explain ethanol metabolism from start to finish?

14. According to the Toxicology SOP, what are the quality assurance standards protocols in place for blood alcohol analysis?

15. Explain the effects of ethanol on a person’s ability to safely operate a motor vehicle?